
FourFront

Sep 22, 2023

Contents

1 Overview 3

2 Installation 5
2.1 Step 0: Obtain Credentials . 5
2.2 Step 1: Verify Homebrew Itself . 5
2.3 Step 2: Install Homebrewed Dependencies . 5
2.4 Step 3: Running Make . 6
2.5 Step 4: Running the Application Locally . 7

3 Running tests 9

4 Building Javascript 11

5 Notes on SASS/SCSS 13
5.1 Compiling “on the fly” . 13
5.2 Force compiling . 13

5.2.1 Overview of encoded Application . 13
5.2.1.1 SOURCE CODE ORGANIZATION . 14
5.2.1.2 BACKEND . 14
5.2.1.3 Guts . 15
5.2.1.4 views . 15
5.2.1.5 snovault.py . 15
5.2.1.6 AuthZ . 15
5.2.1.7 FRONTEND . 15
5.2.1.8 Use of NodeJS . 16
5.2.1.9 About ReactJS . 16
5.2.1.10 Component Pages . 16
5.2.1.11 Boilerplate and Parent Classes . 16
5.2.1.12 User Pages (Templates) . 16
5.2.1.13 Views and Sections (Templates) . 17
5.2.1.14 Parameters (to be supplied in POST object or via GET url parameters): 17

5.2.2 Search Documentation . 17
5.2.3 Security . 18

5.2.3.1 ACL . 18
5.2.3.2 Roles . 18
5.2.3.3 Permissions . 19
5.2.3.4 Default Item permissions . 19

i

5.2.3.5 User Roles . 19
5.2.3.6 Process overview . 19
5.2.3.7 Additional info . 20

5.2.4 Authentication and Authorization . 20
5.2.4.1 Authentication . 20
5.2.4.2 Authorization . 20
5.2.4.3 Permissions . 21

5.2.5 FF-Docker (Local) . 22
5.2.5.1 Installing Docker . 22
5.2.5.2 Configuring FF Docker . 22
5.2.5.3 Building FF Docker . 22
5.2.5.4 Accessing FF Docker at Runtime . 23
5.2.5.5 Alternative Configuration with Local ElasticSearch 23
5.2.5.6 Common Issues . 23
5.2.5.7 Docker Command Cheatsheet . 23

5.2.6 FF-Docker (Production) . 24
5.2.6.1 Building an Image . 24
5.2.6.2 Tagging Strategy . 25
5.2.6.3 Common Issues . 25

5.2.7 Database Documentation . 25
5.2.7.1 PostgreSQL RDB . 25
5.2.7.2 Booting Up Local Database . 26
5.2.7.3 Purpose . 26
5.2.7.4 Prerequisites . 26
5.2.7.5 Back It Up . 27
5.2.7.6 Load It In . 29

5.2.8 Higlass Visualization . 30
5.2.8.1 API Call . 30
5.2.8.2 Foursight finds reference files . 33
5.2.8.3 File Higlass Items . 33
5.2.8.4 Experiment Set (Processed Files) Higlass Items 33
5.2.8.5 Experiment Set (Other Processed Files aka Supplementary Files) Higlass Items . . 33

5.2.9 Loading Inserts . 34
5.2.9.1 bin/load-data . 34
5.2.9.2 App configuration . 34

5.2.10 Dependencies and Invalidation . 35
5.2.10.1 Total Reindexing . 35
5.2.10.2 Back references (rev-links) . 35
5.2.10.3 Isolation level considerations . 36

5.2.11 Local Deployment Troubleshooting . 36
5.2.11.1 20190218 Pillow 3.1.1 install error on Mac 10.14.3, Xcode 10.1 (command line

tools 10.1 10B61) - Koray . 36
5.2.11.2 20190219 Server does not start on Mac 10.14.3, Xcode 10.1 (command line tools

10.1 10B61) - Koray . 37
5.2.12 Static Pages . 37

5.2.12.1 HTML Content . 38
5.2.12.2 Markdown Content . 38
5.2.12.3 Text/String Content . 39
5.2.12.4 Simplification & Future < THIS WILL SUPERCEDE SYSINFOS MAPPING > 40
5.2.12.5 BELOW SYSINFOS APPROACH WILL BE DEPRECATED SOON BUT

FOR NOW STILL FUNCTIONAL . 40
5.2.12.6 Static Section Header @type Mapping . 40

5.2.13 Reverse links . 41
5.2.13.1] . 42

ii

5.2.14 UNIT Testing . 43
5.2.14.1 Python : what & where . 43
5.2.14.2 JavaScript . 43

5.2.15 Load Testing with Locust . 43
5.2.15.1 Supported Environments . 44
5.2.15.2 Config.json . 44
5.2.15.3 <env>.json . 44
5.2.15.4 Command Line Arguments . 44

5.2.16 Introduction for Users . 44
5.2.16.1 Notes for prospective submitters . 45

5.2.17 Getting Started (User) . 46
5.2.17.1 Overview . 46
5.2.17.2 Notes on Experiments and Replicate Sets . 47
5.2.17.3 Referencing existing objects . 47
5.2.17.4 Getting Added as a 4DN User or Submitter . 48
5.2.17.5 Getting Connection Keys for the 4DN-DCIC servers 49

5.2.18 Account Creation . 50
5.2.18.1 If you are a data submitter for a 4DN lab or are new to the project 50
5.2.18.2 Signing in with your institutional email address 50

5.2.19 Overview . 50
5.2.20 Basic Biosample Metadata . 51

5.2.20.1 Biosample Fields . 51
5.2.21 Cell Culture Metadata . 52

5.2.21.1 BiosampleCellCulture fields . 53
5.2.22 Excel Submission . 56

5.2.22.1 Overview . 56
5.2.22.2 Preparing Excel Workbooks . 57
5.2.22.3 Submitting Excel Workbooks . 59
5.2.22.4 Generate a new Template Workbook . 62

5.2.23 Schema information . 62
5.2.24 Web Submission . 63

5.2.24.1 Creating New Items . 63
5.2.24.2 Editing Existing Objects . 64

iii

iv

FourFront

Contents 1

https://travis-ci.org/4dn-dcic/fourfront
https://coveralls.io/github/4dn-dcic/fourfront?branch=master

FourFront

2 Contents

CHAPTER 1

Overview

This is a fork from ENCODE-DCC/encoded . We are working to modularize the project and adapted to our needs for
the 4D Nucleome project.

3

https://github.com/ENCODE-DCC/encoded

FourFront

4 Chapter 1. Overview

CHAPTER 2

Installation

Fourfront is known to work with Python 3.6.x and 3.7.x and will not work with Python 3.8 or greater. If part of the
HMS team, it is recommended to use a high patch version, such as Python 3.7.12, since that’s what we try to do with
our servers, but any version of 3.7 should work if you find you are unable to install that particular patch version. It is
best practice to create a fresh Python virtualenv using one of these versions before proceeding to the following steps.

2.1 Step 0: Obtain Credentials

Obtain AWS keys. These will need to added to your environment variables or through the AWS CLI (installed later in
this process).

2.2 Step 1: Verify Homebrew Itself

Verify that homebrew is working properly:

$ brew doctor

2.3 Step 2: Install Homebrewed Dependencies

Install or update dependencies:

$ brew install libevent libmagic libxml2 libxslt openssl postgresql graphviz nginx
→˓python3
$ brew install freetype libjpeg libtiff littlecms webp # Required by Pillow
$ brew cask install adoptopenjdk8
$ brew install opensearch node@16

NOTES:

5

FourFront

• If installation of adtopopenjdk8 fails due to an ambiguity, it should work to do this instead:

$ brew cask install homebrew/cask-versions/adoptopenjdk8

• Latest version of OpenSearch should be compatible, but if a new version is released that is incompatible the
documentation may need to be updated.

• If you try to invoke elasticsearch and it is not found, you may need to link the brew-installed elasticsearch:

$ brew link --force opensearch

• If you need to update dependencies:

$ brew update
$ rm -rf encoded/eggs

• If you need to upgrade brew-installed packages that don’t have pinned versions, you can use the following.
However, take care because there is no command to directly undo this effect:

$ brew update
$ brew upgrade
$ rm -rf encoded/eggs

2.4 Step 3: Running Make

Run make:

$ make build-dev # for all dependencies
OR
$ make build # for only application level dependencies

NOTES:

• If you have issues with postgres or the python interface to it (psycogpg2) you probably need to install postgresql
via homebrew (as above)

• If you have issues with Pillow you may need to install new xcode command line tools.

– First update Xcode from AppStore (reboot):

$ xcode-select --install

– If you are running macOS Mojave (though this is fixed in Catalina), you may need to run this command as
well:

$ sudo installer -pkg /Library/Developer/CommandLineTools/Packages/macOS_SDK_
→˓headers_for_macOS_10.14.pkg -target /

– If you have trouble with zlib, especially in Catalina, it is probably because brew installed it in a different
location. In that case, you’ll want to do the following in place of the regular call to buildout:

$ CFLAGS="-I$(brew --prefix zlib)/include" LDFLAGS="-L$(brew --prefix zlib)/
→˓lib" bin/buildout

• If you wish to completely rebuild the application, or have updated dependencies, before you go ahead, you’ll
probably want to do:

6 Chapter 2. Installation

FourFront

$ make clean

Then goto Step 3.

2.5 Step 4: Running the Application Locally

Start the application locally.

You’ll need to prepare your local python library search rules by doing the following:

$ python setup_eb.py develop

This setup only needs to be done once, even as you may do the rest of the operations that follow more than once.

In one terminal startup the database servers and nginx proxy with:

$ make deploy1

This will first clear any existing data in /tmp/encoded. Then postgres and elasticsearch servers will be initiated within
/tmp/encoded. An nginx proxy running on port 8000 will be started. The servers are started, and finally the test set
will be loaded.

In a second terminal, run the app with:

$ make deploy2

Indexing will then proceed in a background thread similar to the production setup.

Running the app with the –reload flag will cause the app to restart when changes to the Python source files are detected:

$ bin/pserve development.ini --reload

If doing this, it is highly recommended to set the following environment variable to override the default file monitor
used. The default monitor on Unix systems is watchman, which can cause problems due too tracking too many files
and degrade performance. Use the following environment variable:

$ HUPPER_DEFAULT_MONITOR=hupper.polling.PollingFileMonitor

Browse to the interface at http://localhost:8000/.

2.5. Step 4: Running the Application Locally 7

http://localhost:8000/

FourFront

8 Chapter 2. Installation

CHAPTER 3

Running tests

To run specific tests locally:

$ bin/test -k test_name

To run with a debugger:

$ bin/test --pdb

Specific tests to run locally for schema changes:

$ bin/test -k test_load_workbook
$ bin/test -k test_edw_sync

Run the Pyramid tests with:

$ bin/test

Note: to run against chrome you should first:

$ brew install chromedriver

Run the Javascript tests with:

$ npm test

Or if you need to supply command line arguments:

$./node_modules/.bin/jest

9

FourFront

10 Chapter 3. Running tests

CHAPTER 4

Building Javascript

Our Javascript is written using ES6 and JSX, so needs to be compiled using babel and webpack.

To build production-ready bundles, do:

$ npm run build

(This is also done as part of running buildout.)

To build development bundles and continue updating them as you edit source files, run:

$ npm run dev

The development bundles are not minified, to speed up building.

11

FourFront

12 Chapter 4. Building Javascript

CHAPTER 5

Notes on SASS/SCSS

We use the SASS and node-sass CSS preprocessors. The buildout installs the SASS utilities and compiles the CSS.
When changing the SCSS source files you must recompile the CSS using one of the following methods:

5.1 Compiling “on the fly”

Node-sass can watch for any changes made to .scss files and instantly compile them to .css. To start this, from the root
of the project do:

$ npm run watch-scss

5.2 Force compiling

$ npm run build-scss

Contents

5.2.1 Overview of encoded Application

This document does not contain installation or operating instructures. See README.rst for that.

Encoded is a python/javascript application for storing, modifying, retrieving and displaying the metadata
(as JSON objects) for the ENCODE project. The application was designed specifically to store metadata
for high-throughput genomics experiments, but the overall architecture is suitable for any set of highly
linked objects.

The “deep” backend is a simple Postgres object database. The relational database does not store
any specific information about the objects but simply tracks transactions and keys. CRUD (Cre-
ate/Read/Update/Delete) in this database is governed by a python Pyramid app. This python app can
stand alone and provide JSON objects via GET directly from the database.

13

http://sass-lang.com/
https://github.com/sass/node-sass/
http://www.encodeproject.org/
http://www.pylonsproject.org/

FourFront

Elasticsearch is used to deeply and robustly index the entire object store and provide extremely fast read
access and powerful search capability.

The Browser accessible frontend is written in ReactJS and uses the same Pyramid URL dispatch as the
backend, but converts the GET request JSON into XHTML for viewing in a Web Browser.

5.2.1.1 SOURCE CODE ORGANIZATION

The top Level is organized into the following folders

• .ebextensions - contains all EB environment provisioning scripts

• bin - contains some misc scripts, such as macpoetry-build and test

• deploy - contains remaining deployment scripts

• docs - contain the source of this documentation

• examples - XXX: Unused?

• jest

• node_modules

• parts - contains WSGI process executables

• scripts - XXX: Unused?

• src - main source code

The src directory contains all the python and javascript code for front and backends

• commands - the python source for command line scripts used for synching, indexing and other
utilities independent of the main Pyramid application

• docs - contains some miscellaneous docs

• locust - contains locust load testing code

• schemas - JSON schemas (JSONSchema, JSON-LD) describing allowed types and values for all
metadata objects

• static - Frontend JS (components), SCSS/CSS (HTML styling), images, fonts and frontend JS li-
braries

• tests - Unit and integration tests

• upgrade - python instructions for upgrading old objects stored to the latest schema

• workflow_examples - XXX: document me

• workflow_test_inserts - XXX: document me

5.2.1.2 BACKEND

• Application (responds to web requests) - the main config files are *.ini in the root encoded directory.

14 Chapter 5. Notes on SASS/SCSS

http://www.elasticsearch.org/
http://facebook.github.io/react/
http://www.pylonsproject.org/
http://json-schema.org/
http://json-ld.org/

FourFront

5.2.1.3 Guts

5.2.1.4 views

The guts of the web application are in the views package. Views.views defines the Item and
Collection classes that the web app will respond to via URLs like /{things}/ (returns a Collec-
tion of Things) and /{things}/{id} (retuns a Thing).

Other modules in the views package correspond to non-core views that the app will respond to.
user.py - special user objects are special access_key.py - generation/modification of access
keys for programatic access search.py - constructs ES query and passes though to :9200

5.2.1.5 snovault.py

snovault.py defines the core Collection and Item classes which are the python representation of
linked JSON objects and groups (collections) of linked JSON objects. It contains the business
logic for updating JSON objects via PATCH and the recursive GETs necessary for embedded
objects.

5.2.1.6 AuthZ

• authentication.py

• authorization.py

• persona.py

• JSON data schema

definition Each object type has a .json schema file in /schemas. The objects are
linked and embedded within each other by reference, forming a graph structure.
“Mixins” are sub-schemas included in more than one object type definition. Each
schema file is versioned and mapping an object from an older schema to a new one
is called upgrading

validation Objects are validated as they are POSTed or PATCHed to the application
(via HTTP). Not sure when/how the validation is hooked in

upgrading No idea

linked and embedded objects Sorcery

• Postgres Storage

– Loading

• Elasticsearch & Indexing

5.2.1.7 FRONTEND

The pyramid app handles all URL dispatch and fetches JSON objects from Elastic-
search (or optionally, the database directly). These can be either individual objects or
Collections (arrays) of objects. The objects can either be “flat” with no linked objects
embedded, or with some or all linked objects embedded in the response.

The scope of embedding is decided on an object-by-object bases, listed in the
/src/encoded/types directory. Each object has an ‘embedded’ list defined, which dic-
tates what objects will be embedded in the elasticsearch indexing process. Whole

5.2. Force compiling 15

FourFront

objects can be embedded or specific fields of objects. For objects (with linkTo’s in
the schema) are not explicitly added to the ‘embedded’ list, three fields will automat-
ically included, regardless of whether or not these are calculated properties. These
are link_id, display_title, and uuid.

FOR MORE INFO ON EMBEDDING, reference docs/embedding-and-indexing.rst in sno-
vault.

• renderers.py - code that determines whether to return HTML or JSON based on request,
as well as code for starting the node subprocess renderer.js which converts the ReactJS
pages into XHTML.

5.2.1.8 Use of NodeJS

5.2.1.9 About ReactJS

5.2.1.10 Component Pages

HTML pages are written in Javascript using JSX and ReactJS. These files are in
src/static/components. Each object type has a component which describes how both the in-
dividual item and the collection pages are rendered. Other pages include home and search.
JSX allows the JS file itself to serve like an HTML template, similar to other web frameworks.

5.2.1.11 Boilerplate and Parent Classes

• app.js

• globals.js

• mixins.js

• errors.js

• home.js

• item.js

• collection.js

• fetched.js

• edit.js

• testing.js

5.2.1.12 User Pages (Templates)

• index.js

• antibody.js

• biosample.js

• dataset.js

• experiment.js

• platform.js

• search.js

16 Chapter 5. Notes on SASS/SCSS

http://jsx.github.io
http://facebook.github.io/react/
http://jsx.github.io

FourFront

• target.js

5.2.1.13 Views and Sections (Templates)

• dbxref.js

• navbar.js

• footer.js

API

5.2.1.14 Parameters (to be supplied in POST object or via GET url parameters):

• datastore=(database|elasticsearch) default: elasticsearch

• format=json Return JSON objects instead of XHTML from browser.

• limit=((int)|all) return only some or all objects in a collection

• Searching

–

5.2.2 Search Documentation

URIS

1. http://{SERVER_NAME}/search/?searchTerm={term} Fetches all the documents which contain
the text ‘term’. The result set includes wild card searches and the ‘term’ should be atleast 3
characters long.

• SERVER_NAME: ENCODE server

• term: string that can be searched accross four item_types (i.e., experiment, biosample,
antibody_approval, target)

* TERMS ARE NOT INCLUDED until the corresponding boost values are added to the
schemas of item_type * - For example, you must add a boost of “definition” to the biosample
schema for this term to be searchable for this object

2. http://{SERVER_NAME}/search/?type={item_type} Fetches all the documents of that particular
‘item_type’

• SERVER_NAME: ENCODE server

• item_type: ENCODE item type (values can be: biosample, experiment, antibody_approval
and target)

3. http://{SERVER_NAME}/search/?type={item_type}&{field_name}={text} Fetches and then
filters all the documents of a particular item_type on that field

• SERVER_NAME: ENCODE server

• item_type: ENCODE item type (values can be: biosample, experiment, antibody_approval
and target)

• field_name: Any of the json property in the ENCODE ‘item_type’ schema

5.2. Force compiling 17

http:/
http:/
http:/

FourFront

5.2.3 Security

In pyramids security is interwoven into the framework in a very fined grained fashion. Each
view can have it’s own security rules as can each object. Some basic ideas that are helpful in
understanding how security works in the system are listed below.

5.2.3.1 ACL

Access Control Lists are list of three-tuples that specify security rights.The three-tuples takes the form:

These ACL’s can be attached to a resource by setting the member acl as is done in encoded.types.
base.Item and encoded.types.base.Collection. The system by Default sets up several
ACL’s:

Item based ACL’s

• ONLY_ADMIN_VIEW

• ALLOW_EVERYONE_VIEW

• ALLOW_VIEWING_GROUP_VIEW – based on data in award.viewing_group

• ALLOW_LAB_SUBMITTER_EDIT – based on users Lab association

• ALLOW_CURRENT_AND_SBMITTER_EDIT – everyone can view, lab submitter can edit

• ALLOW_CURRENT – same as ALLOW_EVERYONE_VIEW

• DELETED – used to now show deleted objects (even though they may still be in database)

COLLECTION based ACL’s

• ALLOW_SUBMITTER_ADD

5.2.3.2 Roles

There are several roles defined in the ACL’s in types\base.py, and more can be created elsewhere in
the system. Common roles are:

• group.admin – all powerful

• group.read-only-admin – can see everything

• remoteuser.INDEXER – used by Elastic Search to access all objects

• remoteuser.EMBED – used by Embed functionality to travers relationships and embed children into
parent

• role-viewing_group_member – used with ALLOW_VIEWING_GROUP_VIEW to provide view in-
formation.

• role.lab_submitter – lab association for user to allow view / editing to appropriate data.

18 Chapter 5. Notes on SASS/SCSS

FourFront

5.2.3.3 Permissions

Basic permissions include:

• view

• edit

• visible_for_edit – i.e. a deleted object is not visible for edit

• [‘add’] – can add to a collection

5.2.3.4 Default Item permissions

By default unless specified elsewhere all Items get a default ACL of:

This is automatically overwritten if the Item has a status defined in STATUS_ACL (types-
base.py(110)). For example an item with status released will automatically get the ALLOW_CURRENT
ACL.

This can potentially be overwritten in a particular types.py file by overwriting the __acl__.

_ac_local_roles__

Just before the ACL checks an item can be assigned special roles (during traversal, i.e. during a call to
the web server) based on what is defined in _ac_local_roles__ (which by default will
addsubmits_for.andviewing_group.<award.viewing_group>‘.

5.2.3.5 User Roles

And one step earlier, i.e. before _ac_local_roles are set (which are set based on the item) a user is assigned
groups based upon information stored in the user profile (see schema\user.json). Groups are looked
up and added to the request in the authorization.groupfinder.

5.2.3.6 Process overview

1. Request is made to the system

2. authorization.groupfinder is called after user is authenticated and request is assigned the
principles of user.id (or special principles for remote user / embed user / etc..). It addition prinicples
are assigned for:

• <lab>

• submits_for.<lab>

• group.submitter – possibly

• groups.<group> – from user.groups

• view_group.<group> – from user.viewing_groups

1. Traversal happens (i.e. url is matched to view), also the custom ac_local_roles kicks in and
adds additional principles to the request as described above.

2. Certain view functions may have an @view_config that adds additional security checks to see if
the request can be processed (default is to use the process described in this document). These are
generally declared in the types directory. i.e. types.user or types.page are good examples.

5.2. Force compiling 19

FourFront

3. The request.principles are checked against the view items ACL generated from the item and its
status. If the principles match and the permissions are correct the call proceeds.

5.2.3.7 Additional info

Also see docs/auth.rst for further information on how security works.

5.2.4 Authentication and Authorization

Background reading: Pyramid’s security system.

I extend Pyramid’s built in ACL based security system with my pyramid_localroles plugin so we can map
permissions to roles (e.g. ‘role.lab_submitter’) rather than directly to users.

For more on roles and local roles see:

• http://docs.zope.org/zope2/zope2book/Security.html#different-levels-of-access-with-roles

• http://www.sixfeetup.com/blog/basic-roles-and-permissions-in-plone

• https://www.packtpub.com/books/content/plone-4-development-understanding-zope-security

5.2.4.1 Authentication

An authentication policy identifies who you are, returning a user id. We use pyramid_multiauth to extract
authentication from any of Persona, session cookies, or HTTP basic auth (access keys).

5.2.4.2 Authorization

From the authenticated user id, the groupfinder in authorization.py maps the user id to a number of “prin-
cipals”, user or group identifiers. We lookup the user object and add groups based on the properties:

• groups [<string>..] - global groups like ‘admin’. Generates: group.admin.

• submits_for: [lab..] - allow editing based on object.lab property. Generates: submits_for.<lab-
uuid>.

• viewing_groups: [<string..>] - allow viewing of in progress data based on ob-
ject.award.viewing_group (ENCODE, GGR, REMC.) Generates: viewing_group.ENCODE.

Views are protected by permissions (view, edit, etc.)

When you PUT to /experiment/ENCSR123ABC/ then Pyramid will traverse to the experiment object (see:
Location aware resources) and lookup a view for to PUT which is protected with the edit permission.

At this point my pyramid_localroles plugin steps in and extends the authenticated principals passed to the
ACLAuthorizationPolicy (the global groups that apply across the whole site) with location aware local
roles such as role.lab_submitter and role.viewing_group_member by reference to the __ac_local_roles__
method (base.py) of the context object which returns a mapping based on the context object’s ‘lab’ and
award property, e.g:

{
'submits_for.<context-lab-uuid>': ['role.lab_submitter'],
'viewing_group.<context-award-viewing_group>'': ['role.viewing_group_member

→˓'],
}

20 Chapter 5. Notes on SASS/SCSS

http://docs.pylonsproject.org/projects/pyramid/en/latest/narr/security.html
https://pypi.python.org/pypi/pyramid_localroles/
http://docs.zope.org/zope2/zope2book/Security.html#different-levels-of-access-with-roles
http://www.sixfeetup.com/blog/basic-roles-and-permissions-in-plone
https://www.packtpub.com/books/content/plone-4-development-understanding-zope-security
https://www.persona.org/
../src/encoded/authorization.py
http://docs.pylonsproject.org/projects/pyramid/en/latest/narr/resources.html#location-aware
../src/encoded/types/base.py

FourFront

The ACL authorization policy will then lookup the Access Control List on the experiment object (the
‘context’) by looking at its __acl__ property/method, and then the __acl__ property/methods of its parents
(the /experiments collection and the root object.) We define an __acl__ method on the EncodedRoot object
(root.py), Collection and Item objects (base.py.) The __acl__ method for an Item returns a different ACL
list depending on the object’s ‘status’. This way we allow lab submitters to edit their own ‘in progress’
objects but not ‘released’ objects.

5.2.4.3 Permissions

• add

• add_unvalidated (admin)

• edit

• edit_unvalidated (admin)

• expand (system)

• forms - who can see forms

• impersonate (admin)

• import_items (admin)

• index (system)

• list

• search

• submit_for_any (admin)

• view

• view_details - protection of user contact information

• view_raw (admin)

• visible_for_edit - hiding deleted child objects from edit

Permissions of items are tied to the statuses of items. We have 8 statuses for most items (there are
exceptions like file and publication)

• Current : Everyone can view, admin can edit

• Released : Everyone can view, admin can edit

• Revoked : Everyone can view, admin can edit

• Deleted : Nobody can view, admin can edit

• Replaced : Everyone can view, admin can edit

• Obsolete : Nobody can view, admin can edit

• In review by lab : Lab members can view, submitter can edit

• submission in progress : Project members can view, submitter can edit

• Released to project : Project members can view

This gnu grep expression will extract a list of permissions (brew tap homebrew/dupes; brew install grep):

$ ggrep --no-filename -roP "(?<=permission[=(]['\"])[^'\"]+" src/ | sort |
→˓uniq

5.2. Force compiling 21

../src/encoded/root.py
../src/encoded/types/base.py

FourFront

5.2.5 FF-Docker (Local)

With Docker, it is possible to run a local deployment of FF without installing any system level dependen-
cies other than Docker. A few important notes on this setup.

• Although the build dependency layer is cached, it still takes around 4 minutes to rebuild the front-
end for each image. This limitation is tolerable considering the local deployment now identically
matches the execution runtime of production.

• This setup only works when users have sourced AWS Keys in the main account (to connect to the
shared ES cluster).

• IMPORTANT: Do not upload the local deployment container image to any registry.

5.2.5.1 Installing Docker

Install Docker with (OSX assumed):

$ brew install docker

5.2.5.2 Configuring FF Docker

Use the prepare-docker command to configure docker-compose.yml and
docker-development.ini:

poetry run prepare-docker -h
usage: prepare-docker [-h] [--data-set {prod,test,local,deploy}]

[--load-inserts] [--run-tests]
[--s3-encrypt-key-id S3_ENCRYPT_KEY_ID]

Prepare docker files

optional arguments:
-h, --help show this help message and exit
--data-set {prod,test,local,deploy}

the data set to use (default: local)
--load-inserts if supplied, causes inserts to be loaded (default: not

loaded)
--run-tests if supplied, causes tests to be run in container

(default: not tested)
--s3-encrypt-key-id S3_ENCRYPT_KEY_ID

an encrypt key id (default: the empty string), not
→˓typically used for FF

Note that you must additionally set GLOBAL_ENV_BUCKET=foursight-prod-envs, which will
be passed to the container to resolve environment information. On initial run, you will want to run with
the --load-inserts option so data is loaded. Pass --data-set local to get local inserts, or
deploy to use the production inserts.

5.2.5.3 Building FF Docker

There are two new Make targets that should be sufficient for normal use. To build the image locally,
ensure your AWS keys are sourced and run:

22 Chapter 5. Notes on SASS/SCSS

FourFront

$ make build-docker-local # runs docker-compose build
$ make build-docker-local-clean # runs a no-cache build, regenerating all
→˓layers
$ make deploy-docker-local # runs docker-compose up
$ make deploy-docker-local-daemon # runs services in background

The build will take around 10 minutes the first time but will speed up dramatically after due to layer
caching. In general, the rate limiting step for rebuilding is the front-end build (unless you are also updating
dependencies, which will slow down the build further). Although this may seem like a drawback, the key
benefit is that what you are running in Docker is essentially identical to that which is orchestrated on ECS
in production. This should reduce our reliance/need for test environments.

5.2.5.4 Accessing FF Docker at Runtime

To access the running container:

$ docker ps # will show running containers
$ docker exec -it <container_id_prefix> bash

5.2.5.5 Alternative Configuration with Local ElasticSearch

ElasticSearch is too compute intensive to virtualize on most machines. For this reason we use the FF test
ES cluster for this deployment instead of spinning up an ES cluster in Docker. It is possible however to
modify docker-compose.yml to spinup a local Elasticsearch. If your machine can handle this it is
the ideal setup, but typically things are just too slow for it to be viable (YMMV).

5.2.5.6 Common Issues

Some notable issues that you may encounter include:

• The NPM build may fail/hang - this can happen when Docker does not have enough resources. Try
upping the amount CPU/RAM you are allocating to Docker. This can be done easily from Docker
Desktop, opening the Settings and then accessing the Resources panel. Try 6 CPUs and >8 GB
RAM.

• Nginx install fails to locate GPG key - this happens when the Docker internal cache has run out of
space and needs to be cleaned - see documentation on docker prune.

5.2.5.7 Docker Command Cheatsheet

Below is a small list of useful Docker commands for advanced users:

$ docker-compose build # will trigger a build of the local cluster (see
→˓make build-docker-local)
$ docker-compose build --no-cache # will trigger a fresh build of the
→˓entire cluster (see make build-docker-local-clean)
$ docker-compose down # will stop cluster (can also ctrl-c)
$ docker-compose down --volumes # will remove cluster volumes as well
$ docker-compose up # will start cluster and log all output to console (see
→˓make deploy-docker-local)
$ docker-compose up -d # will start cluster in background using existing
→˓containers (see make deploy-docker-local-daemon)

(continues on next page)

5.2. Force compiling 23

https://docs.docker.com/config/pruning/.

FourFront

(continued from previous page)

$ docker-compose up -d -V --build # trigger a rebuild/recreation of cluster
→˓containers
$ docker system prune # will cleanup ALL unused Docker components - BE
→˓CAREFUL WITH THIS

5.2.6 FF-Docker (Production)

FF-Docker runs in production on AWS Elastic Container Service, meant to be orchestrated from the 4dn-
cloud-infra repository. End users will modify the Makefile to suite their immediate build needs with
respect to target AWS Account/ECR Repository/Tagging strategy. Note that builds should be automated
through AWS CodeBuild. For more information on the specifics of the ECS setup, see 4dn-cloud-infra.

The FF Application has been orchestrated into the ECS Service/Task paradigm. As of writing all core
application services are built into the same Docker image. Which entrypoint to run is configured by
environment variable passed to the ECS Task. As such, we have 4 separate services described by the
following table:

Kind Use Num Spot vCPU Mem Notes
Por-
tal

Services standard API requests 1-4 Yes 4 8192 Needs autoscaling

In-
dexer

Hits /index at 1sec intervals in-
definitely.

4 + Yes .25 512 Can auto-scale based on
Queue Depth

5.2.6.1 Building an Image

NOTE: the following documentation is preserved for historical reasons in order to understand the build
process. YOU SHOULD NOT BUILD PRODUCTION IMAGES LOCALLY. ALWAYS USE CODE-
BUILD.

The production application configuration is in deploy/docker/production. A description of all
the relevant files follows.

• Dockerfile - at repo top level - configurable file containing the Docker build instructions for all local
and production images.

• docker-compose.yml - at repo top level - configures the local deployment, unused in production.

• assume_identity.py - script for pulling global application configuration from Secrets Manager. Note
that this secret is meant to be generated by the Datastore stack in 4dn-cloud-infra and manually filled
out. Note that the $IDENTITY option configures which secret is used by the application workers
and is passed to ECS Task definitions by 4dn-cloud-infra.

• entrypoint.sh - resolves which entrypoint is used based on $application_type

• entrypoint_portal.sh - serves portal API requests

• entrypoint_deployment.sh - deployment entrypoint

• entrypoint_indexer.sh - indexer entrypoint

• install_nginx.sh - script for pulling in nginx

• fourfront_any_alpha.ini - base ini file used to build production.ini on the server given variables set
in the GAC

• nginx.conf - nginx configuration

24 Chapter 5. Notes on SASS/SCSS

FourFront

The following instructions describe how to build and push images. Note though that we assume an existing
ECS setup. For instructions on how to orchestrate ECS, see 4dn-cloud-infra, but that is not the focus of
this documentation.

1. Ensure the orchestrator credentials are sourced, or that your IAM user has been granted sufficient
perms to push to ECR.

2. Run make ecr-login, which should pull ECR credentials using the currently active AWS cre-
dentials.

3. Run make build-docker-production.

4. Navigate to Foursight and queue the cluster update check. After around 5 minutes, the new images
should be coming online. You can monitor the progress from the Target Groups console on AWS.

5.2.6.2 Tagging Strategy

As stated previously, there is a single image tag, typically latest, that determines the image tag that
ECS will use. This tag is configurable from the 4dn-cloud-infra repository.

After a new image version has been pushed, issue a forced deployment update to the ECS cluster through
Foursight. This action will spawn a new set of tasks for all services using the newer image tags. For
the portal, once the new tasks are deemed healthy by ECS and the Application Load Balancer, they will
be added to the Portal Target Group and immediately begin serving requests. At that time the old tasks
will begin the de-registration process from the target group, after which they will be spun down. The
remaining new tasks will come online more quickly since they do not need to pass load balancer health
checks. Once the old tasks have been cleaned up, it is safe to trigger a deployment task through the
Deployment Service.

5.2.6.3 Common Issues

In this section we detail some common errors and what to do about them. This section should be updated
as more development in this setup occurs.

1. Error: denied: User:<ARN> is not authorized to perform:
ecr:InitiateLayerUpload on resource: <ECR REPO URL>

This error can happen for several reasons:

• Invalid/incorrect IAM credentials

• IAM user has insufficient permissions

• IAM credentials are valid but from a different AWS account

5.2.7 Database Documentation

The (encodeD) system uses a Postgres implementation of a document store of a JSON-LD object hierar-
chy. Multiple views of each document are indexed in Elasticsearch for speed and efficient faceting and
filtering. The JSON-LD object tree can be exported from Elasticsearch with a query, converted to RDF
and loaded into a SPARQL store for arbitrary queries.

5.2.7.1 PostgreSQL RDB

When an object is POSTed to a collection, and has passed schema validation, it is inserted into the Postgres
object store, defined in storage.py.

5.2. Force compiling 25

FourFront

There are 7 tables in the RDB. Of these, Resource represents a single URI. Most Resources (otherwise
known as Items or simply “objects” are represented by a single PropSheet, but the facility exists for
multiple PropSheets per Resource (this is used for attachments and files, in which the actual data is stored
as BLOBS instead of JSON).

The Key and Link tables are indexes used for performance optimziation. Keys are to find specific unique
aliases of Resources (so that all objects have identifiers other than the UUID primary key), while Links
are used to track all the JSON-LD relationships between objects (Resources). Specifically, the Link table
is accessed when an Item is updated, to trigger reindexing of all Items that imbed the updated Item.

The CurrentPropSheet and TransactionRecord tables are used to track all changes made to objects via
transactions.

Local Machine Development

5.2.7.2 Booting Up Local Database

The bin/dev-servers command, required as part of the boot-up process (see the repo README)
completely drops and restarts a local copy of the PostegreSQL server instance and database. Script posts
all the objects in tests/data/inserts (plus /tests/data/documents as attachments). Then indexes them all in
local elastic search. The server instance and ‘postgres’ database are both destroyed when you kill the
dev-servers process.

This temporary PostgreSQL database exists in the filesystem in your Unix-based system’s /tmp/
snovault/pgdata folder - which may be connected to as the hostname. The database created is
named ‘postgres’, with an admin user also named ‘postgres’, and also should be accessible via localhost
port 5432. No password is required.

By default, insert test data defined in Fourfront is loaded into the local database. See the inserts documen-
tation for more information.

Backup & Loading of Production Database

5.2.7.3 Purpose

There may be many reasons to back-up live database data. At minimal, we should have periodic back-ups
in case the production environment and database melt due to Murphy’s Law. Another reason may be to
load live production data to local environment for more thorough testing when the test inserts might not
be complete enough.

5.2.7.4 Prerequisites

Software

PgAdmin is recommended for performing back-ups, as well as other PgSQL-centric tasks. PgAdmin
provides a GUI for interacting with your database(s), and also allows you to explore the PropSheets and
other database data. You also need to make sure you have Amazon’s **Elastic Beanstalk Command Line
Interface** (EB CLI), installed and configured with your Amazon key, as well as have a copy of the
4dn-encode private key in your /Users/YourName/.ssh folder. We’ll need to create a SSH tunnel through
an Amazon EB/EC2 instance to our live production database - which is not accessible from the public
internet for security reasons.

26 Chapter 5. Notes on SASS/SCSS

https://github.com/4dn-dcic/fourfront/blob/master/README.rst
../src/encoded/tests/data/README.md
https://www.pgadmin.org
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/eb-cli3.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/eb-cli3.html

FourFront

Configuration

Make sure your EB CLI is working and you’ve been able to SSH into an EC2 instance. You likely do this
by running something like:

eb ssh -n 1 --custom "ssh -i /Users/alex/.ssh/4dn-encode.pem"

where 4nd-encode.pem is your copy of the 4dn-encode private key. You’ll also need the hostname,
port, username, database, and password (or connection string) of the RDS (Amazon term for database in-
stance/server) where the live database is located, which may be obtained by logging into the AWS console
and looking at the environment variables configured for the Elastic Beanstalk environment whose database
you want to access. The hostname will likely resemble fourfront-webprod.co3gwj7b7tpq.
us-east-1.rds.amazonaws.com:5432. We aren’t going to write what the username, database,
and password will resemble in a public document.

5.2.7.5 Back It Up

Once you have your prerequisites, do the following:

1. In a dedicated Terminal window, create an SSH tunnel via eb ssh command to the public RDS
database. The command will look like this:

eb ssh -n 1 --custom "ssh -i /Users/alex/.ssh/4dn-encode.pem -L
→˓5999:fourfront-webprod.co3gwj7b7tpq.us-east-1.rds.amazonaws.com:5432"

By using the ‘-L’ argument, you create a tunnel from your local port 5999 to a remote host:port on
the EC2 instance you’re connecting to. Replace path to your 4dn-encode private key and host:port
of remote RDS accordingly. N.B. We need to use eb ssh rather than plain ssh because eb ssh
tells Amazon to temporarily open port 22 (for SSHing) which would otherwise remain closed for
security reasons.

1. Open PgAdmin and, if not yet done, create a new ‘Server’ connection and call it “SSH to
fourfront-webprod db” or something relevant. Make sure the hostname is localhost:5999, as
we’ll be utilizing the SSH tunnel we created in step 1. Use the database, username, and pass-
word that are defined in the AWS EB environment variables configuration.

2. On the left tree-view pane of PgAdmin, should see the live RDS server, hopefully connected.
Expand the server until see the database which have connected to. Right click on the database,
and select “Backup. . . ” from the drop-down menu.

3. It is important to set the right backup options. Your filename isn’t important but should
make sense. The suggested format is YYYY-MM-DD-ENVNAME-I.sql, e.g. ‘2017-07-19-
fourfront-webprod-2.sql’‘. The following options are important (spread across both tabs)

• Select “Plain Text” for format.

• For encoding, select SQL_ASCII or similar. Your luck with UTF-8 may vary.

• Under “Dump Options” tab, ensure the following are set to “Yes”:

– Pre-Data

– Post-Data

– Data

– “Include DROP DATABASE statement”

– “Include CREATE DATABASE statement”

5.2. Force compiling 27

FourFront

– “With OIDs”

– (Optional) “Use INSERT Commands”

– Other options may be left on default or adjusted to your needs.

2. Click “Backup”. PgAdmin should pop up a little box on bottom right of their GUI showing time
elapsed and then a success or error message. This should take about 30 seconds (or longer) as of
2017-07-06.

28 Chapter 5. Notes on SASS/SCSS

https://i.gyazo.com/c9a68e09361991e04ed7b3be38147a02.png
https://i.gyazo.com/4bec46071b30e6ad12d7db12dbef1d66.png

FourFront

3. Navigate to your newly backed up SQL file. There it is! Remember to disconnect the server and
SSH tunnel when done.

5.2.7.6 Load It In

No point in backing up data if can’t get it to work again. Even if backing up for the sole sake of having
back-ups, an untested back-up is no back-up at all.

If you backed up your .SQL file with no issues, you should be able to easily import the data back into
production without issue by SSH tunneling to the production RDS again and running the .SQL file against
the production database with the psql command. Don’t try this without reason, though, for the sake of
production data stability.

If want to import into your local, there are a few extra steps needed, and a few things to keep in mind to
keep your machine performant.

1. With your local environment shut down, run:

bin/dev-servers development.ini --app-name app --clear --init --load

as usual, but do not run bin/pserve yet. This will boot up your local PostgreSQL server and
database but not launch the web app yet.

2. In your favorite text editor *which can handle large files***, open the SQL file which you backed
up earlier. Do a search & replace for the user (from EB environment variable) and replace all
instances with ‘postgres’, to match the user used to connect to your local server. You can also
search & replace all instances of the database name -**if- you want to change it from production
database name (not suggested). Assuming your database name in SQL file is different than ‘postgres’
(database name of database created by local environment), you will be creating another database on
the same local PostgreSQL server, alongside the database with your test inserts (initially loaded in
bin/dev-servers and named ‘postgres’ (not to be confused with user name of same value)).

3. Run:

psql -h /tmp/snovault/pgdata -U postgres -w postgres -a -f "/Users/alex/
→˓db_dumps/2017-06-29-fourfront-webdev-1.sql"

5.2. Force compiling 29

https://i.gyazo.com/8947db89fe2739a5729d54cfce10958d.png

FourFront

to run SQL file against your PostgreSQL server instance, replacing the SQL file path and name with
your own. This will create and populate another database with your backed up data, alongside the
one created and populated with test inserts by bin/dev-servers command.

4. Open up your development.ini file. Create a copy of it you’d like, or just adjust locally and don’t
commit. Make the following changes:

• Comment out the existing sqlalchemy.url option, and replace it with:

sqlalchemy.url = postgresql://postgres@:5432/DATABASE_NAME?host=/tmp/
→˓snovault/pgdata

where DATABASE_NAME is database name of the database you loaded in with your SQL
backup file. This will ensure you connect to your backed-up database when you boot bin/pserve
instead of the test inserts database from bin/dev-servers.

• Under both [composite:indexer] & [composite:file_indexer] sections, add
the following:

timeout = 64800

By default, the indexer runs once a minute, and on local machine, it runs for 45 minutes. While
running, the indexer uses a lot of energy and is very likely to overheat laptops – especially if
running continuously. It may drain your battery faster than you can charge it. Adjusting the
auto-indexing timeout to 48 hours instead of one minute alleviates most of this pain except for
initial indexing-upon-bootup.

• Save (or save copy of) adjusted development.ini file.

5. Finally, run bin/pserve development.ini (if created a copy of development.ini, replace
“development.ini” in command with your .ini filename). It should start indexing through tens of
thousands of entries. Grab lunch while your laptop fans learn how to fly. Return to a local portal
running with production data. Remember to revert your development.ini when want to load in test
inserts instead of production data.

Afterthoughts

In lieu of PgAdmin, may use the command-line pg_dump tool to connect to production database (over
SSH tunnel) and save output to SQL file. Ensure the same configuration (ASCII, no compression, CRE-
ATE/DROP DATABASE command, . . .) is set as for PgAdmin when running it.

Eventually, creating a shell or Python script to automate backup (and potentially import) may become a
task, wherein the backup script could then perhaps be run on a scheduled basis.

5.2.8 Higlass Visualization

This document explains the end to end behavior of the visualization endpoint.

5.2.8.1 API Call

Make a POST request to add_files_to_higlass_viewconf/. The fourfront server will return
the viewconf used to create Higlass Items.

30 Chapter 5. Notes on SASS/SCSS

FourFront

Payload

higlass_viewconfig

A base viewconf to add the files to. If not provided or null, the server uses a default “blank” viewconf.

files

A list of file accessions. Each file will be added to the viewconf.

height

Expected height for all of the tracks. If not provided, the default height is 600 pixels.

firstViewLocationAndZoom

An array of 3 numbers. These correspond to the coordinates of the first view, as well as its zoom level.

The first 2 numbers indicate the center of the highlighted data, while the final number notes how zoomed
in the view is.

The zoom level relies on d3 library’s implementation, so if you want to experiment with it, find some
already existing viewconfs and edit the location locks.

If not provided, the view will point at the center of the domain, with the zoom level covering the entire
domain range.

remove_unneeded_tracks

If there are no 2D Higlass tracks (for example, no mcool files,) and this to true, all of the left side tracks
will be removed. By default, this is false.

Example payload

{
"files": ["4DNFIWG6CQQA", "4DNFIZJB62D1", "4DNFIWQJFZHS", "4DNFI9UM7MDC",
→˓"4DNFIZMTKWDI", "4DNFIC624FKJ"]
}

Creates a new viewconf. All of the files are checked to make sure they have the same genome assembly.
Here’s a sample output.

{
"success": true,
"errors": "",
"new_viewconfig": {

<truncated>
},
"new_genome_assembly": "GRCh38"

}

5.2. Force compiling 31

FourFront

</details>

You still need to POST or PATCH the new_viewconf object to higlass-view-configs/ to cre-
ate/edit a Higlass item.

Viewconf limits

1D tracks only

• Gene annotation files are always first, chromsizes files are always last

• Otherwise, each track is added to the top in order they are listed.

• There are no left side tracks (unless the view had a 2D track before. Use
remove_unneeded_tracks in that case.)

Single 2D track

• The 1D tracks on top will be mirrored on the left side.

• Only 1 2D track in a given view. It will be in the center of the viewconf.

• A chromsizes grid is added on top of the 2D track.

Multiple 2D tracks

• Only 1 2D track per view.

• Adding another will copy the first view, replacing the track.

• All views are “locked” so scrolling or zooming one view will scroll/zoom the others.

• No more than 6 views per viewconf. If there are more than 2, the view will create a second row to
add the third view.

Errors and Issues

All files must have a uuid, higlass_uid and genome assembly

The POST still returns a 200 status, but the errors field will be non-empty and success will be false.

Make sure all of files have the same genome assembly

If the files have mismatched genome assemblies, you’ll get an error.

{
"success": false,
"errors": "Files have multiple genome assemblies: GRCh38: 4DNFIWG6CQQA,

→˓4DNFIZJB62D1; GRCm38: 4DNFIU37KWB1, 4DNFIU37KWB1, 4DNFIU37KWB1,
→˓4DNFIU37KWB1, 4DNFIU37KWB1, 4DNFIU37KWB1",
"new_viewconfig": null,
"new_genome_assembly": null

}

32 Chapter 5. Notes on SASS/SCSS

FourFront

Fourfront display adjustment

By default, Higlass Items are 600 pixels high. But Experiment Set pages allow 300 pixels for Higlass
Items. Front end javascript will dynamically resize a copy of the viewconfig to fit.

• 2D tracks adjust their height automatically, so they are not modified.

• If there are 1D and 2D tracks in the viewconf, the 2D track is set to 2/3 of the container height.

• If there are more than 2 views, the container halves the relative amount of height to work with.

• 1D tracks will be scaled so they maintain the relative amount of space in the new container.

Foursight Higlass checks

Foursight uses the Fourfront endpoint to create and update HiglassItems. All of the checks work on a file
or experiment set.

5.2.8.2 Foursight finds reference files

Foursight reads the genome assembly from the source files, and gets the relevant chromsizes and beddb
files.

5.2.8.3 File Higlass Items

Foursight looks for files with Higlass uids and genome assemblies. There are additional queries used to
further filter, based on the Foursight check.

With the file and the reference files Foursight calls the Fourfront API, gets the new_viewconf and
creates a new Higlass Item. The File’s static_content section is updated so it refers to the uuid of the
Higlass item.

5.2.8.4 Experiment Set (Processed Files) Higlass Items

Foursight looks for ExpSets with:

• A processed_files section with files with Higlass uids and genome assemblies.

• At least one experiments_in_set object with a processed_files section with files with
Higlass uids and genome assemblies.

And then applies queries to filter further, based on the Foursight check.

All of the files in the processed_files section with Higlass uids and genome assemblies are combined
with the reference files to make or update a Higlass Item. The ExpSet’s static_content is updated so the
tab:processed-files section uses the new Higlass Item.

5.2.8.5 Experiment Set (Other Processed Files aka Supplementary Files) Higlass Items

The opf section is a bit more complicated because each group has its own Higlass Item.

Foursight looks for ExpSets with a other_processed_files section. For each group it sees which
groups are worth updating:

• There are files with Higlass uids and a genome assembly

5.2. Force compiling 33

FourFront

• There is no Higlass Item for this group

• OR The files have been updated after the Higlass Item (the Higlass Item is at least
minutes_leeway minutes older)

Each opf group in the ExpSet (not the experiments_in_set.other_processed_files sec-
tion) is updated.

{
"files" : ["<list of file accessions, OR an empty array, see below>"],
"title" : "<Name of the opf group>"
"higlass_view_config" : "<higlass item uuid>"
}

If the files come from experiments_in_set.other_processed_files, the files array is
empty. Otherwise it contains all of the experiment_set.other_processed_files used.

5.2.9 Loading Inserts

Fourfront has a set of json insert files that are used to load data in various environments. These are loaded
using bin/load-data, which calls the functions defined in src/encoded/loadxl.py.

The behavior of load-data depends on the current Fourfront environment and the snovault.
load_test_data setting in the used .ini file. This documentation goes into some detail on those
options; to read about which inserts are used, see this documentation.

5.2.9.1 bin/load-data

Main command for loading insert data. Example usage is:

The arguments are as follows:

• config_uri: required. Path to the .ini configuration file

• –app-name: Pyramid app name in configfile, usually “app”

• –access-key: if “s3” (default), will create and upload a new admin access key to s3. Otherwise, if
“local”, will build a local keypairs.json file and add the key to that

• –drop-db-on-mt: if True and the Fourfront environment is “fourfront-mastertest”, will drop the DB
before loading inserts for a fresh test DB

• –prod: boolean flag that must be used to run load inserts on either “fourfront-webprod” or
“fourfront-webprod2” environments

5.2.9.2 App configuration

The load function used is defined under snovault.load_test_data in the .ini configuration
file. For local usage, this is development.ini and the default load function used is encoded.
loadxl:load_local_data. For production environments, the value of this setting should be set as
the LOAD_FUNCTION environment variable. This will probably be either load_prod_data for stag-
ing/data environments or load_test_data for test environments. Again, these configuration values
correspond to the functions used in loadxl.py.

34 Chapter 5. Notes on SASS/SCSS

https://github.com/4dn-dcic/fourfront/blob/master/src/encoded/tests/data/README.md
https://github.com/4dn-dcic/fourfront/blob/master/src/encoded/loadxl.py

FourFront

5.2.10 Dependencies and Invalidation

Keeping elasticsearch in sync.

The /_indexer wsgi app (es_index_listener.py) drives the incremental indexing process. When a new
transaction is notified by postgres (or after 60 seconds) it calls the /index view (indexer.py) which works
out what needs to be reindexed. The actual reindexing happens in parallel in multiprocessing subprocesses
(mpindexer.py.)

When rendering a response, we record the set of embedded_uuids and linked_uuids used.

• embedded_uuids are those objects embedded into the response or whose properties have been
consulted in rendering of the response. Any change to one of these objects should cause an invali-
dation. (See Item.__json__.)

• linked_uuids are the objects linked to in the response. Only changes to their url need trigger an
invalidation. (See Item.__resource_url__.)

When modifying objects, event subscribers keep track of which objects where updated and their re-
source paths before and after the modification. This is used to record the set of updated_uuids and
renamed_uuids in the transaction log. (See indexing.py.)

The indexer process listens for notifications of new transactions. With the union of updated_uuids and
union of renamed_uuids across each transaction in the log since its last indexing run, it performs a search
for all objects where embedded_uuids intersect with the updated_uuids or linked_uuids intersect with the
renamed_uuids. The result is the set of invalidated objects which must be reindexed in addition to those
that were modified (recorded in updated_uuids.)

Where an object’s url depends on other objects – Page whose url includes its ancestors in its path, or
Target whose url includes a property from its referenced organism – we must ensure that linked_uuid
dependencies to those other objects are recorded in addition the object itself when linked. (See Page.
__resource_url__ and Target.__resource_url__.)

5.2.10.1 Total Reindexing

Cases can arise where a total reindexing needs to be triggered. >curl -XDELETE ‘local-
host:9200/encoded/meta/indexing’ will specifically force it.

localhost:9200/encoded/meta/indexing stores the document that keeps track of incremental indexing. The
indexer script checks for that document when deciding between full index and indexing only the recently
invalidated documents. It has the benefit of keeping the old-yet-to-be-indexed data online, especially if
it’s a production instance.

Alternatively, >curl -XDELETE ‘http://localhost:9200/encoded/’ will delete the entire index along with
the mapping information for schema objects. Although it does trigger indexing, missing mapping infor-
mation makes the documets unsearcheable. Mapping in elasticsearch describes how each field of each
object should be tokenized/analyzed/indexed for searching.

5.2.10.2 Back references (rev-links)

In a parent-child relationship, it is the child object that references the parent object. A parent response
often renders a list of child objects, and that list my be filtered to remove deleted or unpublished child
objects.

We want to ensure that parent responses are invalidated when a child object’s state changes, so that it
would now be included in its parent’s list of child objects when it was not before. A parent response
must therefore include all potentially included child objects in its embedded_uuids, which is done by
accessing the child status property through the Item.__json__ method.

5.2. Force compiling 35

http://localhost:9200/encoded/

FourFront

We must also invalidate a parent response when a new child is added (either a new object of changing
the parent referenced.) This is done adding the parent uuid to the list of updated_uuids recorded on the
transaction adding/modifying the child. (See indexing.py invalidate_new_back_revs.)

SEE ALSO rev-links.md for more information about how to setup rev links

5.2.10.3 Isolation level considerations

Postgres defaults to its lowest isolation level, READ COMMITTED: http://www.postgresql.org/docs/9.3/
static/transaction-iso.html

For invalidation of back references of new child objects only READ COMMITTED isolation is necessary
as invalidated back references are calculated from the updated objects properties.

However, writes must be at least REPEATABLE READ in order for overalapping PATCHes to apply
safely.

During recovery indexing uses READ COMMITTED isolation. Indexed objects may be internally incon-
sistent if there are concurrent updates to embedded objects. But indexing is still eventually consistent as
any concurrent update will invalidate the object and it will be reindexed later.

To avoid internal possible internal inconsistancies of indexed objects, SERIALIZABLE isolation is re-
quired. It is used once it becomes available when recovery is complete.

5.2.11 Local Deployment Troubleshooting

NOTE

If you had problems with your local deployment, and found solutions to them, please document them
here. Please include software versions, and date

5.2.11.1 20190218 Pillow 3.1.1 install error on Mac 10.14.3, Xcode 10.1 (command line
tools 10.1 10B61) - Koray

error message

--enable-zlib requested but zlib not found, aborting

I switched to Mojave, decided to do a fresh install of ff, and updated Xcode from appstore, run
xcode-select --install to update (you might need to restart computer after installing xcode,
run xcode, and agree to the terms). It turns out the new (Mojave) Xcode Command Line tools no longer
installs needed headers in /include. This did the trick for me

sudo installer -pkg /Library/Developer/CommandLineTools/Packages/
macOS_SDK_headers_for_macOS_10.14.pkg -target /

for more info https://github.com/pyenv/pyenv/issues/1219

36 Chapter 5. Notes on SASS/SCSS

http://www.postgresql.org/docs/9.3/static/transaction-iso.html
http://www.postgresql.org/docs/9.3/static/transaction-iso.html
https://github.com/pyenv/pyenv/issues/1219

FourFront

5.2.11.2 20190219 Server does not start on Mac 10.14.3, Xcode 10.1 (command line tools
10.1 10B61) - Koray

error message

I and Carl tried various things (rebuilds, re-linking brew . . .) but it did not help. At the end I did the
following, I guess deleting the folder was the key.

• delete all brew elastic search versions

• delete the folder /usr/local/etc/elasticsearch/

• reinstall elasticsearch

• rebuild

#

5.2.12 Static Pages

Most static pages content - unless hard-coded for the front-end (in case of custom interactivity, etc.) -
exists in HTML or Markdown files in the repository, in an S3 bucket, or in-line within an insert. Contents
of a page is an array of linkTo StaticSection items loaded in the same way as other Items, and exists in
the “content” property on the Page Item. The “name” property of the Page Item becomes the static page’s
path where it may be viewed.

In the /src/encoded/tests/data/[..]/page.json file, an insert defining the page available
at “help/submitting/getting-started” might be in this form:

[...
{

"title" : "Getting Started with Submissions",
"name" : "help/submitter-guide/getting-started",
"content" : [

"help.submitter-guide.getting-started.introduction",
"help.submitter-guide.getting-started.metadata-structure"

],
"table-of-contents" : {

"enabled" : true,
"header-depth" : 4

}

}
...]

Notice the “content” property, which links to StaticSection Items which might look like the following in
/src/encoded/tests/data/[..]/static_section.json inserts:

[...
{

"name" : "help.submitter-guide.getting-started.introduction",
"body" : "To get started, ...",
"toc-title" : "Introduction",
"options" : {

"filetype" : "md"
}

}, {

(continues on next page)

5.2. Force compiling 37

FourFront

(continued from previous page)

"name" : "help.submitter-guide.getting-started.metadata-structure",
"file" : "/docs/public/metadata-submission/metadatastructure1.html",
"title" : "Metadata Structure"

},
...]

What the above configuration objects says, is for the back-end to enable a page route “help/submitter-
guide/getting-started”, and at that route to return some JSON which has two sections - one with no title
visible on page but with one in the table of contents (“Introduction”); and one with the same title visible
for both table of contents and on page (“Metadata Structure”). If do not include “title” nor “toc-title”, or
have “title” set to null without a “toc-title”, the section (& any children) will be excluded from the table
of contents (but not the page). A Page title is mandatory (but not StaticSection title).

Importantly – if two or more StaticSections have titles or toc-titles defined on a page, then ALL section
titles for that page will be visible in the table of contents, even if they do not exist, as otherwise header
depths within different sections cannot properly/automatically align. If e.g. have a page with 3 sections,
and two of them have titles, then the third section (without a title) will get an auto-generated title based
off of its name (dashes replaced with spaces and capitalized) to be shown in the Table of Contents.

The section content will be the raw contents of the file located at file property (which maybe a remote
location). The entirety of the “table-of-contents” object is sent across to the front-end to be used as
configuration options for the table of contents. If “enabled” is set to false in this configuration, the page
rendered on front-end will have just a single wider pane with all the content in lieu of a Table of Contents.

Section content is parsed based on the optional options.filetype field, which defaults to plain
HTML. If a file is used as source of content (whether in repo or S3 bucket), this options.filetype
is unnecessary as it is obtained from the file ending.

5.2.12.1 HTML Content

Is excluded from Table of Contents except for Section title (if any).

For HTML content (filename with .html extension or object.filetype not filled or set to ‘HTML’),
no further parsing is performed for table of contents (aside from showing the table of contents if
PageItem["table-of-contents"]["enabled"] == true). HTML content is simply in-
serted into sections of the page (under its section title, if any set), along with corresponding entries for
the sections in Table of Contents. First-level ToC links navigate you in-page to top of section. Headers
within the HTML content do not currently get parsed and added to Table of Contents (though this can be
implemented at some point).

5.2.12.2 Markdown Content

For any Markdown content (filename with .md extension object.filetype set to ‘md’), for each section of
content (contents of file from ‘filename’), the Table of Contents front-end script “looks” through the parsed
Markdown content to gather next-decrement-level headers up until a header of same level as current ToC
entry, and then dynamically generates links for those next-level headers in the Table of Conents which
would navigate you in-page to that Markdown header.

This functionality may be controlled by the header-depth field in “table-of-contents” configuration.
Only children headers as low as header-depth will be included in the ToC so that small headers may
be excluded. By default, this is 6, as headers in HTML markup go as ‘deep’ as 6 (h1, h2, h3, h4, h5, h6).
To only show section titles and no Markdown headers within the Table of Contents for a page, it should
be enough to set header-depth to 0 or 1.

38 Chapter 5. Notes on SASS/SCSS

FourFront

5.2.12.3 Text/String Content

For a section, can also define file to refer to a .txt file or have a plain-text body field (object.
filetype == “txt”). It will be treated more or less like plain HTML but be slightly better implemented
and safer for use on front-end.

Interactive React Component Placeholders (for front-end developers)

Sometimes, you may want to put some dynamic element onto a static page, but don’t want entire static
page to be defined on the front-end. The /help page is a perfect example, as the vast majority of the
content is in Markdown files, but there is an interactive slideshow that exists halfway down the page. For
this, we create a “Text/String Content” section (“content” property instead of “filename” property), and
in the content, put in a “placeholder” string. In such cases you will almost always want to exclude “title”
property or set it to null, so the interactive element doesn’t appear in Table of Contents.

The placeholder string should look like this (displayed in context of section definition):

... {
"filename" : "carousel-place-holder",
"content" : "placeholder: <SlideCarousel />"

}, ...

It will be the word “placeholder”, followed by a colon, followed by any string you want – though
React JSX syntax is reccommended for clarity. On the front-end, in the view or template Re-
act component which handles that particular static page route, there must exist a function named
replacePlaceHolder(placeholderString). This function will accept the string after
placeholder:, with spaces removed, and should return a valid JSX element. For clarity, it is sug-
gested to have the placeholder string be the same as the React/JSX component output of that function for
that string. Having replacePlaceHolder() allows us to avoid security risks inherent in calling ‘eval(. . .)’.

Best Practices

• DO split Pages into multiple StaticSections with proper title for each, if possible, rather than having
Page that has just one big long Markdown section/file.

– This will allow each section to be re-used in other places & apply permissions to each section.

– If there is only one or less sections with a title (e.g. could have multiple sections all with no
titles or just one big long section), then the ## (h2) headers get promoted as if they were Section
headers in TableOfContents. However, styling within the page itself will remain as Markdown
h2 header (not section header). H1 (#) headers are reserved for Page titles and are not currently
supported within (our parsing of) Markdown.

– If have 2+ static sections with titles, all sections and their titles — even if nonexistent —
will be displayed in TableOfContents. If there’s a section for which title doesn’t exist, ti-
tle will default to (JS version of) " ".join([word.capitalize() for word in
section.link.split("-")]) where section.link is last bit of StaticSection
name (e.g. “path.to.section.lorem-ipsum-1” => “Lorem Ipsum 1”).

• If are going to edit Pages/Sections through Fourfront UI (rather than using a Markdown/text editor
& then adding to inserts) — then is a good idea to keep inserts up-to-date in order to make local
development + testing simpler as well as provide an extra source of backups.

– Our primary mission isn’t to maintain/support a custom content management system so having
a concrete outside-of-db representation of static pages I think is desireable.

5.2. Force compiling 39

FourFront

– There is now a command called bin/export-data which can be used to export Page and
StaticSection inserts into JSON files. Examples: .. code-block:: bash

bin/export-data “https://data.4dnucleome.org/search/?type=Page&limit=all” -u
ACCESS_KEY_ID -p ACCESS_KEY_SECRET > new_page_inserts_file.json
bin/export-data “https://data.4dnucleome.org/search/?type=StaticSection&
limit=all” -u ACCESS_KEY_ID -p ACCESS_KEY_SECRET >
new_static_section_inserts_file.json

• For images which desire to host externally (e.g. outside of repository or third-party URL), then it
is suggested to upload images into a relevanet sub-folder (perhaps create an “/images/” folder for
auxiliary images) of the “4dn-dcic-public” public S3 bucket. This bucket could also be used to host
Markdown (.md) or other files, probably in the “/static-pages/” sub-folder, the URL of which can be
used in the “file” field of StaticSections (will require a PATCH to Page or StaticSection to update
4DN Item content from file).

Permissions

Currently may set a status of “draft”, “published”, or “deleted” for any Page or StaticSection and
permissions will work accordingly. Permissions by lab/user should work in same way as for other Items,
but this hasn’t yet been tested.

StaticSections Above Search Results

5.2.12.4 Simplification & Future < THIS WILL SUPERCEDE SYSINFOS MAPPING >

If we like this structure of having a static page or block for (almost) each @type, we could
simplify greatly by getting rid of the Sysinfo Item & just having search.py look-up if any page
w/ name ’/search-info-header/’ + @type exists and then including its contents into a
‘search_header_content’ property as part of search results/response JSON.

5.2.12.5 BELOW SYSINFOS APPROACH WILL BE DEPRECATED SOON BUT FOR NOW
STILL FUNCTIONAL

5.2.12.6 Static Section Header @type Mapping

Currently this can be dynamically updated via the SysInfo Item : /sysinfos/
search-header-mappings/

The Item /sysinfos/search-header-mappings/ must exist in database for any static content
to appear. Else will get nothing in area above search results. SysInfo cannot be inserted via deploy and
must be POSTed in.

Do this on any instances we want mappings: https://gyazo.com/de6758e68ca898101218ad3d95687569 ,
with “mapping” taking the correct form (PATCHing subsequently after creation for updates).

Again, the name of the sysinfo object MUST be **search-header-mappings**

POST to <host>/sysinfo/ :

{
"name" : "search-header-mappings",
"title" : "Search Header Mapping",
"description": "Mapping of Static search result header URIs to Item @type",

(continues on next page)

40 Chapter 5. Notes on SASS/SCSS

https://data.4dnucleome.org/search/?type=Page&limit=all
https://data.4dnucleome.org/search/?type=StaticSection&limit=all
https://data.4dnucleome.org/search/?type=StaticSection&limit=all
https://gyazo.com/de6758e68ca898101218ad3d95687569

FourFront

(continued from previous page)

"mapping" : {
"WorkflowRun" : "/static-sections/search-info-header.WorkflowRun",
"Workflow" : "/static-sections/search-info-header.Workflow"

}
}

PATCH to <host>/sysinfo/search-header-mappings:

{
"mapping" : {

"WorkflowRun" : "/static-sections/search-info-header.WorkflowRun",
"Workflow" : "/static-sections/search-info-header.Workflow",
"FileSetMicroscopeQc" : "/static-sections/search-info-header.

→˓FileSetMicroscopeQc"
}

}

The “value” in the ‘mapping’ dictionary/object is the @id or link to a StaticSection Item. Here these static
sections are referenced by their name (rather than UUID). In order to allow such a link to your StaticSec-
tion, ensure the ‘name’ of it doesn’t have any slashes (/) or hashes (#). For example, in the case above
the names are search-info-header.WorkflowRun, search-info-header.Workflow, &
search-info-header.FileSetMicroscopeQc.

Auto-Generated Help Dropdown Menu

Pages have an optional children field which holds an array of other Pages (as linkTos). Routes of child
pages MUST extend the parent route. For example, page with name == “help/submitter-guide” must
have children with names in the form of “help/submitter-guide/something”. The (sub-)children of the top
level “help” page are automatically added to the top Help menu dropdown.

5.2.13 Reverse links

Reverse (rev) links are actually a pretty cool thing. Any time you have one object link to another object,
through a calculated or schema based property, a rev link allows you to easily create the reverse direction
link on the object that was being linked to. In addition, rev links take the status of the item that we are
reverse linking into account – we do not want to create rev links to items that have a status of ‘deleted’,
for example. In ENCODE, rev links were represented by linkFrom connections. We have changed that to
only use linkTo.

Here is a simple example for the experiment item type (src/types/experiment.py):

Experiment sets have a linkTo experiments through the array experiments_in_set field. To make a rev link
back from the experiment to the experiment sets, we must define the rev link and then create a calculated
property that populates the linkTo.

For the first part, we define the rev property on the Experiment object. It is a dictionary that is keyed by
the rev link name and has a value of (<item type to rev link>, <field to rev link>). It would be defined as
such:

‘‘‘

rev = { ‘experiment_sets’: (‘ExperimentSet’, ‘experiments_in_set’),

}

5.2. Force compiling 41

FourFront

‘‘‘

You can read this is as: we want to create a reverse link to ExperimentSet using the experiments_in_set
field. Next, we will define a calculated property on the Experiment that will call this rev and create a list
of actual linkTos.

‘‘‘ @calculated_property(schema={

“title”: “Experiment Sets”, “description”: “Experiment Sets to which this experiment be-
longs.”, “type”: “array”, “exclude_from”: [“submit4dn”, “FFedit-create”], “items”: {

“title”: “Experiment Set”, “type”: [“string”, “object”], “linkTo”: “ExperimentSet”

}

}) def experiment_sets(self, request):

return self.rev_link_atids(request, “experiment_sets”)

‘‘‘

That’s pretty much it! Now you have an automatic rev link that will be created on your experiment back to
your experiment set. To embed values from the experiment set, you can add them to your embedded_list
like any other object. For example, to embed the accession of the experiment set, you would add:

‘‘‘ embedded_list += [

‘experiment_sets.accession’

5.2.13.1]

There are a couple things going on behind the scenes that we should be aware of. Both are defined on
the base Item class (src/types/base.py). First, we have a method called rev_link_atids on Item that MUST
be called within your calculated property creating the rev links. It is actually responsible for generating
the rev links from snovault and turning them from uuids to @ids. The code for the method is below (you
should not need to change it)

‘‘‘ <a method for Item class>

def rev_link_atids(self, request, rev_name): “”” Returns the list of reverse linked items given a defined
reverse link, which should be formatted like: rev = {

‘<reverse field name>’: (‘<reverse item class>’, ‘<reverse field to find>’),

}

“”” conn = request.registry[CONNECTION] return [request.resource_path(conn[uuid]) for uuid in

self.get_filtered_rev_links(request, rev_name)]

‘‘‘

Lastly, there is an attribute on Item called filtered_rev_statuses. It has a tuple value and serves to filter out
all of the items of the given statuses from your rev links. This is crucial to the rev links working – we do
not want to rev link to items with ‘deleted’ or ‘replaced’ statuses. This attribute may be overloaded on
any item type to provide more fine-grained filtering. In base.py, it is:

` filtered_rev_statuses = ('deleted', 'replaced') `

In snovault, check out src/snovault/resources.py for the underlying get_filtered_rev_links and
get_rev_links functions that provide the foundation for rev_link_atids.

42 Chapter 5. Notes on SASS/SCSS

FourFront

5.2.14 UNIT Testing

5.2.14.1 Python : what & where

• test_schema : testing if mixins load from schema, and schema sytanctically correct

• test_type_<object> : test type sepcific stuff, minux embedding, calculated properties, up-
date, etc..

• test_search : test effects of embedding and what not on search

5.2.14.2 JavaScript

Unit tests in JavaScript are performed with **Jest**, and initialized via npm test
<testfilenameprefix> where testfilenameprefix is the first part (before .js) of the file-
name located in src/encoded/static/components/__tests__. Run npm test without
arguments to run all tests. Execution of all tests is also automatically triggered in Travis upon committing
or pull requesting to the GitHub repository.

Guidelines

• Look at current tests to get understanding of how they work.

• Check out the **Jest** API.

• Check out the React **TestUtils** documentation.

• If you need to test AJAX calls, utilize **Sinon** to create a **fake server** inside testing scripts,
which will also patch XMLHttpRequest to work within tests. For example, in a .../__tests__/
file, can have something resembling the following: ‘‘‘javascript sinon = require(‘sinon’); var server
= sinon.fakeServer.create();

// Setup dummy server response(s) server.respondWith(

“PATCH”, // Method context[‘@id’], // Endpoint / URL [

200, // Status code { “Content-Type” : “application/json” }, // Headers ‘{ “status” :
“success” }’ // Raw data returned

]

);

// Body of test doSomeFunctionsHereWhichSendAJAXCalls(); // Any code with AJAX/XHR
calls. server.respond(); // Respond to any AJAX requests currently in queue. ex-
pect(myNewValue).toBe(whatMyNewValueShouldBe); // Assert state in Jest that may have changed in
response to or after AJAX call completion.

doSomeMoreFunctionsWithAJAX(); server.respond(); expect(myOtherNewValue).toBe(whatMyOtherNewValueShouldBe);

server.restore(); // When done, restore/unpatch the XMLHttpRequest object. ‘‘‘

5.2.15 Load Testing with Locust

Locust is a load testing tool that can easily be provisioned to run against any of our environments. There
are two required files - config.json and <env>.json where <env> is the environment you’d like to
run load testing on.

5.2. Force compiling 43

https://facebook.github.io/jest/
https://facebook.github.io/jest/docs/api.html
https://facebook.github.io/react/docs/test-utils.html
http://sinonjs.org
http://sinonjs.org/docs/#fakeServer
mailto:'@id

FourFront

5.2.15.1 Supported Environments

• Data

• Staging

• Mastertest

• Hotseat

5.2.15.2 Config.json

To configure the load testing you must write the file config.json. A basic one is provided as a default
and updates are gitignore’d (so if a change is needed you will have to force it). There are two important
fields - routes and envs. envs specifies a mapping from environment name to the associated URL.
This should never really change unless our URL’s do. You could also add new environments here, but a
seperate key file is necessary. The second field is routes. This is where you specify what routes you’d
like Locust to hit. Locust will hit all routes specified approximately evenly. This behavior can be changed
by explicitly specifying your routes in ff_locust.py.

5.2.15.3 <env>.json

In this file you will need to add your access keys for the environment you’d like to test. By default we
will try to locate your credentials in <env>.json. If we do not locate them the program will exit. Provide
the field ‘username’ with your access key ID and ‘password’ with the secret. You can generate new
access keys from your user page when accessing the relevant portal. These keys will be different across
environments, hence the need to provide a separate <env>.json file per environment you’d like to test

5.2.15.4 Command Line Arguments

usage: main.py [-h] [–time TIME] [–nclients NCLIENTS] [–rate RATE] [–lower LOWER] [–upper
UPPER] config key

Locust Load Testing

positional arguments: config path to config.json key path to <env>.json

optional arguments:

-h, --help show this help message and exit

--time TIME time to run test for, default 1m. Format: 10s, 5m, 1h, 1h30m
etc.

--nclients NCLIENTS number of clients, default 10

--rate RATE number of clients to hatch per second, default 10

--lower LOWER lower bound on time to wait between requests, default 1

--upper UPPER upper bound on time to wait between requests, default 2

5.2.16 Introduction for Users

• The 4DN Data Portal will be the primary access point to the omics and imaging data, analysis tools,
and integrative models generated and utilized by the 4DN Network.

44 Chapter 5. Notes on SASS/SCSS

FourFront

• The primary high level organizing principle for the data is sets of replicate experiments.

• A good entry point for exploring available data is the Browse Page.

• See below for an overview of our metadata model.

• As of September 2017, the portal is currently open to the network for data submission for standard
functional genomics experiments (Hi-C and variants, ChIA-PET and variants, RNA-seq, ChIP-seq,
ATAC-seq).

• Continuing developments in the metadata model and data portal are ongoing.

5.2.16.1 Notes for prospective submitters

If you would like submit data to the portal:

• You will need to create a user account.

• Please skim through the metadata structure.

• Check out the other pages in the Help menu for detailed information on the submission process.

• Of note are the required metadata for the biological samples used in experiments, which is specified
on this page.

• We can set up a webex call to discuss the details and the most convenient approach for your existing
system.

Metadata Structure

The DCIC, with input from different 4DN Network Working groups, has defined a metadata structure to
describe:

• biological samples

• experimental methods

• data files

• analysis steps

• and other pertinent data.

The framework for the the metadata structure is based on the work of ENCODE DCC.

The metadata is organized as objects that are related with each other. An overview of the major objects is
provided in the following slides.

In our database:

• The objects are stored in the JavaScript Object Notation format.

• The schemas for the different object types are described in JSON-LD format.

• The json schemas can be found here.

• A documentation of the metadata schema is also available as a google doc here.

5.2. Force compiling 45

https://www.encodeproject.org/help/getting-started/#organization
http://www.json.org/
http://json-ld.org/
https://github.com/hms-dbmi/fourfront/tree/master/src/encoded/schemas
https://docs.google.com/document/d/15tuYHENH_xOvtlvToFJZMzm5BgYFjjKJ0-vSP7ODOG0/edit?usp=sharing

FourFront

5.2.17 Getting Started (User)

5.2.17.1 Overview

In order to make your data accessible, searchable and assessable you should submit as much metadata as
possible to the 4DN system along with the raw files you have generated in your experiments.

These pages are designed to

• show you how to find out what kind of metadata we collect for your particular type of experiment

• introduce the mechanisms by which you can submit your metadata and data to the 4DN data portal.

For an overview of the metadata structure and relationships between different items please see the slides
available on the metadata introductory page.

We have three primary ways that you can submit data to the 4DN data portal.

Web Submission

The online web submission forms are best used

• To submit one or a few experiments.

• To edit one or a few fields of an already submitted but not yet released item.

• As a hands on way to gain familiarity with the 4DN data model.

Documentation on how to get started with this interface is here.

Data Submission via Spreadsheet

The excel metadata workbooks

• Are useful for submitting metadata and data for several experiments or biosamples

• Can be used to make bulk edits of submitted but not yet released metadata

• Contain multiple sheets where each sheet corresponds to an object type and each column a field of
metadata

• Can be generated using the Submit4DN software

• Are used as input to the Submit4DN software which validates submissions and pushes the content
of the forms to our database.

Documentation of the data submission process using these forms can be found here.

REST API

For both meta/data submission and retrival, you can also access our database directly via the REST-API.

• Data objects exchanged with the server conform to the standard JavaScript Object Notation (JSON)
format.

• Our implementation is analagous to the one developed by the ENCODE DCC.

If you would like to directly interact with the REST API for data submission see the documentation here.

46 Chapter 5. Notes on SASS/SCSS

https://www.encodeproject.org/help/rest-api/

FourFront

5.2.17.2 Notes on Experiments and Replicate Sets

Biological replicates

• The 4DN Consortium strongly encourages that experiments be performed using at least two different
preparations of the same source biomaterial - i.e. bioreplicates.

• When submitting metadata you should submit two Experiments that use the same Biosource, but
have different Biosamples.

• In many cases the only difference between Biosamples may be the dates at which the cell culture or
tissue was harvested.

• The experimental techniques and parameters will be shared by all experiments of the same biorepli-
cate set.

Technical replicates

• Multiple sequencing runs performed at different times using a library prepared from the same
Biosample and the same methods up until the sample is sent to the sequencer - i.e. technical repli-
cates.

Submitting replicate information

• The replicate information is stored and represented as a set of experiments that includes labels indi-
cating the replicate type and replicate number of each experiment in the set.

• The mechanism that you use to submit your metadata will dictate the type of item that you will
associate replicate information with

– In excel workbooks bioreplicate and technical replicate numbers are entered in the Experiment
sheet

– Using the API you directly associate the replicate information (i.e. replicate number and the
experiment identifier) with the ExperimentSetReplicate objects.

– Using the web submission interface the replicate numbers and linked experiments are added
from the ExperimentSetReplicate page

• In the database the information will always end up directly associated with ExperimentSetReplicate
objects.

• Specific details on formatting information regarding replicates is given in the Spreadsheet Submis-
sion page.

• When submitting using the REST API you should format your json according to the specifications
in the schema as described in the REST API page.

5.2.17.3 Referencing existing objects

Using aliases

Aliases are a convenient way for you to refer to other items that you are submitting or have submitted in
the past.

• An alias is a lab specific identifier that you can assign to any item

• An alias takes the form of lab:id_string eg. parklab:myalias.

• An alias must be unique within all items.

• Generally it is good practice to assign an alias to any item that you submit

5.2. Force compiling 47

FourFront

• If you use the Online Submission Interface to create new items designating an alias is the first
required step.

• Once you submit an alias for an Item then that alias can be used as an identifier for that Item in the
current submission as well as in any subsequent submission.

Other ways to reference existing items

You don’t need to use an alias if you are referencing an item that already exists in the database.

Any of the following can be used to reference an existing item in an excel sheet or when using the REST-
API.

• accession - Objects of some types (eg. Files, Experiments, Biosamples, Biosources, Individuals. . .)
are accessioned, e.g. 4DNEX4723419.

• uuid - Every item in our database is assigned a “uuid” upon its creation, e.g. “44d3cdd1-a842-408e-
9a60-7afadca11575”.

• type/id in a few cases object specific identifying terms are also available, eg. award number for
awards, or lab name for labs. (see table below)

Object Field type/ID ID
Lab name /labs/peter-park-lab/ peter-park-lab
Award number /awards/ODO1234567-01/ ODO1234567-01
User email /users/test@test.com/ test@test.com
Vendor name /vendors/fermentas/ fermentas
Enzyme name /enzymes/HindIII/ HindIII
Construct name /constructs/GFP-H1B/ GFP-H1B

• Many of the objects that you may need for your submissions may already exist on the 4DN web site.

• We encourage submitters to use existing database items as much as possible.

• Common reusable items include:

– Vendors

– Enzymes

– Biosources

– Protocols

• For example, if there is an existing biosource (e.g. accession 4DNSRV3SKQ8M for H1-hESC (Tier
1)) for the new biosample you are creating, you should reference the existing one instead of creating
a new one.

5.2.17.4 Getting Added as a 4DN User or Submitter

Before you can view protected lab or project data or submit data to the 4DN system you must be a
registered user of the site and have the appropriate access credentials.

• To view lab data that is still in the review phase you must be registered as a member of the lab that
produced the data.

• To submit metadata and files you must be designated as a submitter for a lab

• Most current 4DN lab members should already be registered in our system.

48 Chapter 5. Notes on SASS/SCSS

mailto:/users/test@test.com/
mailto:test@test.com

FourFront

For instructions on creating an account, please see this page.

Metadata and data accessibility.

• Most metadata items have the following default permissions:

– members of the submitting lab can view

– submitters for the lab can edit

– to help you review and edit a lab’s submissions the DCIC data wranglers can view and edit

• Once the data and metadata are complete and quality controlled, they will be released according to
the data release policy adopted by the 4DN network.

• After release the data can no longer be edited by data submitters - contact the DCIC to report data
issues and we can work together to get them resolved

5.2.17.5 Getting Connection Keys for the 4DN-DCIC servers

If you have been designated as a submitter for the project and plan to use either our spreadsheet-based
submission system or the REST-API an access key and a secret key are required to establish a connection
to the 4DN database and to fetch, upload (post), or change (patch) data. Please follow these steps to get
your keys.

1. Log in to the 4DN website with your username (email) and password. If you have not yet created an
account, see this page for instructions.

2. Once logged in, go to your ”Profile” page by clicking Account on the upper right side of the page.

3. In your profile page, click the green “Add Access Key” button, and copy the “access key ID” and
“secret access key” values from the pop-up page. Note that once the pop-up page disappears you
will not be able to see the secret access key value. However, if you forget or lose your secret key
you can always delete and add new access keys from your profile page at any time.

4. Create a file to store this information.

• The default parameters used by the submission software is to look for a file named “key-
pairs.json” in your home directory.

• However you can specify your own filename and file location as parameters to the software (see
below).

• The key information is stored in json format and is used to establish a secure connection.

• the json must be formatted as shown below - replace key and secret with your new “Access Key
ID” and “Secret Access Key”.

• You can use the same key and secret to use the 4DN REST-API.

Sample content for keypairs.json

{
"default": {
"key": "ABCDEFG",
"secret": "abcdefabcd1ab",
"server": "https://data.4dnucleome.org/"

}
}

Tip: If you don’t want to use that filename or keep the file in your home directory you can use:

5.2. Force compiling 49

https://data.4dnucleome.org

FourFront

• the --keyfile parameter as an argument to any of the scripts to provide the path to your keypairs
file.

• the --key parameter to indicate a stored key name.

import_data --keyfile Path/name_of_file.json --key
NotDefault

5.2.18 Account Creation

5.2.18.1 If you are a data submitter for a 4DN lab or are new to the project

• Please email data wranglers at support@4dnucleome.org to get set up with an account with the
access credentials for your role.

• Please provide an email address which you wish to use for your account and CC your PI for valida-
tion purposes. The email associated with the account you use for login must be the same as the
one registered with the 4DN-DCIC.

– This can be any email address (e.g. an institutional email account) but must be connected to
either a Google or Github account.

– For more information on linking your institutional email account to a Google account, see
below.

5.2.18.2 Signing in with your institutional email address

• The DCIC uses the OAuth authentication system which will allow you to login with a Google or
GitHub account.

• If you prefer to use your institutional email address to log in to the portal (recommended), you need
to have a Google or GitHub account registered with that email address.

• If you do not already have a Google or GitHub account with your email address, you can set up one
up by visiting the Google account creation page with the non-gmail option.

NOTE that it is important not to register this account to have gmail as your institutional email address
must be the primary email associated with the google account for authentication to work properly!

Once your account request is processed, you will then be able to log in with the ‘LOG IN WITH
GOOGLE’ option using your institutional email address and Google account password.

static/img/docs/submitting-metadata/new-google-acct.png

5.2.19 Overview

• The 4DN consortium will collect metadata on the preparation of a biological sample (biosample) in
order to make the data FAIR, Findable, Accessible, Interoperable and Reusable, to the extent that
such a service benefits the network and scientific community at large.

• Many 4DN experiments are performed using cell lines. Other experiments may be performed on
isolated primary cells or tissues.

50 Chapter 5. Notes on SASS/SCSS

mailto:support@4dnucleome.org
https://oauth.net/
https://github.com
https://accounts.google.com/SignUpWithoutGmail
/static/img/docs/submitting-metadata/new-google-acct.png

FourFront

• Experimenters may also perform assays where cells are transiently treated, for example by addition
of a drug or introduction of a silencing construct, or stably genomically modified through Crispr
technologies.

This page outlines and describes the types of metadata that is requested for biological samples.

• The first part of the document outlines the few fields shared by all biosamples.

• The Cell Lines and Samples Working Group has focused on developing requirements for cell line
metadata and this is the primary focus of the remainder of this document.

Note that the working group is still discussing some of the metadata and requirements are evolving. If you
have any questions or concerns please feel free to ‘contact us <mailto:support@4dnucleome.org>‘_.

5.2.20 Basic Biosample Metadata

5.2.20.1 Biosample Fields

description - Required {:.text-400}

• A brief specific description of the biosample

• example “K562 cells prepared for in situ Hi-C experiments”

• example “GM12878 cells modified using Crispr to delete CTCF sites in the PARK2 region prepared
for chromatin capture experiments”

biosource - Required {:.text-400}

• The value of this field is a reference to usually one Biosource object whose metadata is submitted
separately.

• This Biosource object refers to a cell line, tissue or primary cell and has its own associated metadata.

– NOTE: The tiered cell lines all have an existing biosource in the database that can be re-used
and referenced by it’s accession, alias or uuid - while other biosources may require you to
submit metadata for them.

• It is possible, though rare, for a single biosample to consist of more than one biosource - eg. pooling
of two different cell lines - in these cases you can reference multiple biosources in this field.

cell_culture_details - Required only for cultured cell lines {:.text-400}

• The value of this field is a reference to a BiosampleCellCulture object whose metadata is submitted
separately and is detailed in the Cell Culture Metadata section below.

modifications - Required if cells have been genomically modified {:.text-400}

• Genetic modifications - this field is required when a Biosample has been genomically modified eg.
Crispr modification of a cell line.

• The value of this field is a list of one or more references to a Modification object whose metadata is
submitted separately.

5.2. Force compiling 51

FourFront

• Modifications include information on expression or targeting vectors stably transfected to generate
Crispr’ed or other genomically modified samples.

treatments - Required if cells have been treated ‘transiently’ with drugs or by transfec-
tion. {:.text-400}

• This field is used when a Biosample has been treated with a chemical/drug or transiently altered
using RNA interference techniques.

• The value of this field is a reference to a Treatment object whose metadata is submitted separately.

• There are currently two general types of treatments - more will be added as needed.

1. Addition of a drug or chemical

2. Transient or inducible RNA interference

biosample_protocols - Optional {:.text-400}

• Protocols used in Biosample Preparation - this is distinct from SOPs and protocol for cell cultures.

• example protocol description “Preparation of isolated brain tissue from BALB/c adult mice for chro-
matin capture experiments”

• The value of this field is a list of references to a Protocol object - an alias or uuid.

• The Protocol object can include an attachment to a pdf document describing the steps of the prepa-
ration.

• The Protocol object is of type ‘Biosample preparation protocol’ and can be further classified as
‘Tissue Preparation Methods’ if applicable.

5.2.21 Cell Culture Metadata

• The consortium has designated 4 cell lines as Tier 1, which will be a primary focus of 4DN research
and integrated analysis.

• A number of other lines that are expected to be used by multiple labs and have approved SOPs for
maintaining them have been designated Tier 2.

• In addition, some labs may wish to submit datasets produced using other cell lines.

To maintain consistent data standards and in order to facilitate integrated analysis the Cell Lines and
Samples Working Group has adopted the following policy.

Certain types of metadata, if not submitted will prevent your data from being flagged “gold standard”. For
your data to be considered “gold standard”, you will need to obtain your cells from the approved source
and grow them precisely according to the approved SOP and include the following required information:

1. A light microscopy image (DIC or phase contrast) of the cells at the time of harvesting (omics) or
under each experimental condition (imaging);

2. culture start date, culture harvest date, culture duration, passage number and doubling number

Other metadata is strongly encouraged and the exact requirements may vary somewhat depending on the
cell type and when the data was produced (i.e. some older experiments can be ‘grandfathered’ in even if
they do not ‘pass’ all the requirements).

The biosample cell culture metadata fields that can be submitted are described below.

52 Chapter 5. Notes on SASS/SCSS

https://data.4dnucleome.org/search/?type=Biosource&cell_line_tier=Tier+1
https://data.4dnucleome.org/search/?type=Biosource&cell_line_tier=Tier+2

FourFront

5.2.21.1 BiosampleCellCulture fields

description - Strongly Encouraged {:.text-400}

• A short description of the cell culture procedure

• example “Details on culturing a preparation of K562 cells”

morphology_image - Required {:.text-400}

• Phase Contrast or DIC Image of at least 50 cells showing morphology at the time of collection

• This is an authentication standard particularly relevant to Tiered cell lines.

• The value of this field is a reference to an Image object that needs to be submitted separately.

culture_start_date - Required {:.text-400}

• The date the the cells were most recently thawed and cultured for the submitted experiment

• Date can be submitted in as YYYY-MM-DD or YYYY-MM-DDTHH:MM:SSTZD ((TZD is the
time zone designator; use Z to express time in UTC or for time expressed in local time add a time
zone offset from UTC +HH:MM or -HH:MM).

• example Date only (most common use case) - “2017-01-01”

• example Date and Time (uncommonly used) -“2017-01-01T17:00:00+00:00” - note for time; hours,
minutes, seconds and offset are required but may be 00 filled.

culture_harvest_date - Required {:.text-400}

• The date the culture was harvested for biosample preparation.

• Date format as above.

culture_duration - Required {:.text-400}

• Total Days in Culture.

• Total number of culturing days since receiving original vial, including pyramid stocking and expan-
sion since thawing the working stock, through to harvest date.

• The field value is a number - can be floating point

• example “5”

• example “3.5”

passage_number - Required {:.text-400}

• Number of passages since receiving original vial, including pyramid stocking and expansion since
thawing the working stock, through to harvest date.

• Only integer values are allowed in this field eg. 3, 5, 11

5.2. Force compiling 53

FourFront

doubling_number - Required {:.text-400}

• The number of times the population has doubled since the time of thaw (culture start date) until
harvest.

• This may be determined and reported in different ways

1. passage ratio and number of passages

2. direct cell counts.

• Therefore, this field takes a string value

• example “7.88”

• example “5 passages split 1:4”

follows_sop - Required {:.text-400}

• Flag to indicate if the 4DN SOP for the specified cell line was followed - options ‘Yes’ or ‘No’

• If a cell line is not one of the ‘Tiered’ 4DN lines this field should be set to ‘No’

protocols_additional - Required if ‘follows_sop’ is ‘No’ {:.text-400}

• Protocols used in Cell Culture when there is deviation from a 4DN approved SOP.

• Protocols describing non-4DN protocols or deviations from 4DN SOPs, including additional cul-
ture manipulations eg. stem cell differentiation or cell cycle synchronization if they do not follow
recommended 4DN SOPs

• The value of this field is a list of references to a Protocol object - an alias or uuid.

• The Protocol object can include an attachment to the pdf document.

doubling_time - Optional {:.text-400}

• Population Doubling Time

• The average time from thaw (culture start date) until harvest it takes for the population to double.

• Researchers can record the number of times they split the cells and by what ratio as a simple ap-
proximation of doubling time. This is especially important for some cell lines eg. IMR90 (a mortal
line) and HI and H9 human stem cells.

• eg. ‘2 days’

authentication_protocols - Optional {:.text-400}

• References to one or more Protocol objects can be submitted in this field.

• The Protocol objects should be of the type ‘Authentication document’

• The Protocol object can be further classified by indicating a specific classification eg. ‘Karyotyping
authentication’ or ‘Differentiation authentication’.

• The Protocol description should include specific information on the kind of authentication

54 Chapter 5. Notes on SASS/SCSS

FourFront

– example “g-banding karyotype report”

– example “images of FoxA2 and Sox17 expression in differentiated endoderm cells”

• The Protocol object can include an attachment to the pdf or image document.

karyotype - Optional description of cell ploidy and karyotype {:.text-400}

• Description of cell Ploidy - a textual description of the population ploidy and/or karyotype.

• Important for potentially genomically unstable lines and strongly encouraged if the passage number
of an unstable line is greater than 10.

• A textual description of chromosome count and any noted rearrangements or copy number varia-
tions.

• examples include

– chromosome counts or structural variation using sequencing data

– chromosome counts using droplet PCR

– cytological G-banding

• Using this field allows this information to be queried in searches.

• NOTE An image or authentication document (see above) may be submitted in place or in addition
to this.

differentiation_state - Optional {:.text-400}

• For cells that have undergone differentiation a description of the differention state and markers used
to determine the state.

• Using this field allows this information to be queried in searches.

• example ‘Definitive endoderm as determined by the expression of Sox17 and FoxA2’

• NOTE An authentication document (see above) can be submitted in place or in addition to this.

synchronization_stage - Optional {:.text-400}

• If a culture is synchronized then the cell cycle stage or description of the point from which the
biosample used in an experiment is prepared.

• Using this field allows this information to be queried in searches.

• example ‘M-phase metaphase arrested cells’

• NOTE An authentication document (see above) can be submitted in place or in addition to this.

cell_line_lot_number - Strongly Suggested for non-Tier 1 cells {:.text-400}

• For 4DN Tier2 or unclassified cell lines - a lot number or other information to uniquely identify the
source/lot of the cells

5.2. Force compiling 55

FourFront

5.2.22 Excel Submission

5.2.22.1 Overview

• Metadata and data can be submitted to our platform using Microsoft Excel WorkBooks that describe
related items in separate sheets.

• This section provides detailed information on how to use the WorkBooks.

• You can check out the example WorkBook we prepared for the data from Rao et. al. 2014 to
familiarize yourself with the general structure.

• Based on the type of experiment(s) for which you plan to submit data, the data wranglers can provide
you with an Excel WorkBook containing several WorkSheets.

• Each sheet corresponds to an Item type in our metadata database.

• The workbook provided should contain all the sheets that you may need for your submission.

• You can refer to this table for information on all the Item types available in the database.

• Each sheet should also contain all the data fields that can be submitted for that Item type.

• Depending on if you have submitted data before or if you are using shared reagents that have been
submitted by other labs, you may not need to provide information on every sheet or in every field.

Organization of the Workbook

• Generally, it makes sense to begin with the left most sheet in the workbook as the sheets in a work-
book are ordered so that Items that have fields that take a reference to another Item as their value
appear ‘after’ i.e. to the right of that Item’s sheet in the workbook.

• A sheet for an Item starts with a row of field names.

• Absolutely required fields are marked with a leading asterisk (eg. *experiment_type). - failure to
supply a value in these fields will cause an error

• The second row of the sheet indicates the type of the information expected for the fields.

• The third row includes a description of each of the fields.

• In some cases the values that you can submit for a particular field are constrained to a specific set of
terms and when this is the case the possible values are shown in the fourth row.

• Any row that starts with “#” in the first column will be ignored, so you can add non-data rows for
your own use.

• However, PLEASE NOTE THAT THE FIRST 2 ROWS OF A SHEET SHOULD NOT BE
MODIFIED.

Excel Headers

1. Field name

2. Field type (string, number, array, embedded object)

3. Description

4. Additional info (comments and choices for fields with controlled vocabulary)

• You may notice that in some sheets there are additional commented rows that contain data values.

• These are rows corresponding to items that already exist in the database and can provide you with
identifiers that you can reuse in your submission (see Referencing existing items).

56 Chapter 5. Notes on SASS/SCSS

https://github.com/hms-dbmi/Submit4DN/blob/master/Data_Files/Rao_et_al_2014/fieldsRao.xls?raw=true

FourFront

• Only those items that either are associated with your lab or are already released to the public will
appear in these commented data rows.

• Your data entry should begin at the first non-commented row.

5.2.22.2 Preparing Excel Workbooks

• A field can be one of a few different types;

– string

– number/integer

– array/list

– Item

• The type will be indicated in the second row.

• Most field values are strings:

– a term from a controlled vocabulary, i.e. from a constrained list of choices

– a string that identifies an Item

– a text description.

– If the field type is an array, you may enter multiple values separated by commas.

Basic field formats

static/img/docs/submitting-metadata/field_types.png

Basic fields example

static/img/docs/submitting-metadata/basic_field_eg.png

• There are some fields values that require specific formatting. These cases and how to identify them
are described below.

In some cases a field value must be formatted in a certain way or the Item will fail validation. In most
cases tips on formatting requirements will be included in the Additional Info row of the spreadsheet.

Examples of these are

• Date fields - YYYY-MM-DD format.

• URLs -checked for proper URI syntax.

• patterns - checked against simple regular expressions (eg. a DNA sequence can only contain A, T,
G, C or N).

• Database Cross Reference (DBxref) fields that contain identifiers that refer to external databases

5.2. Force compiling 57

/static/img/docs/submitting-metadata/field_types.png
/static/img/docs/submitting-metadata/basic_field_eg.png

FourFront

– In many cases the values of these fields need to be in database_name:ID format. eg. an SRA
experiment identifier ‘SRA:SRX1234567’ (see also Basic fields example above).

– In a few cases where the field takes only identifiers for one specific databases the ID alone
can be entered - eg. ‘targeted_genes’ field of the Target Item enter gene symbols eg. PARK2,
DLG1.

• Some fields in a Sheet for an Item may contain references to another Item.

• The referenced Item may be of the same or different type.

• Examples of this type of field include the ‘biosource’ field in Biosample or the ‘files’ field in the
ExperimentHiC.

• The ‘files’ field is also an example of a list field that can take multiple values.

• You can reference an item in the excel workbooks using one of four possible ways:

1. lab-specific alias

2. accession

3. item-type-specific identifier

4. UUID

More information about these four identifiers is provided in Using aliases.

• Some Items can contain embedded sub-objects that are stored under a single Item field name but
that contain multiple sub-fields that remain grouped together.

• These are indicated in the Item spreadsheet using a ‘.’ (dot) notation.

For example the “experiment_relations” field has 2 sub-fields called “relation-
ship_type”, and “experiment”. In the spreadsheet field names you will see experi-
ment_relations.relationship_type and experiment_relations.experiment.

• If the Item field is designed to store a list of embedded sub-objects, you can enter multiple sub-
objects by manually creating new columns and appending incremented integers to the fields names
for each new sub-object.

For example, to submit a total of three related experiments to an Experimen-
tHiC Item you would find the experiment_relations.relationship_type and experi-
ment_relations.experiment columns, copy them and have total of 6 columns named:

and enter a valid relationship_type term and experiment identifier to each of the three pairs of columns.

Multiple linked columns for lists of embedded objects

static/img/docs/submitting-metadata/embedded_objects.png

• Ways that you can reference items that already exist in the 4DN database in your spreadsheet sub-
mission is described here.

• In some cases information for existing items will be present in the Excel Work Sheets provided for
your submission.

• You can also check the existing items from collection pages that list all of them.

58 Chapter 5. Notes on SASS/SCSS

/static/img/docs/submitting-metadata/embedded_objects.png

FourFront

• The links for item lists can be constructed by https://data.4dnucleome.org/ +
plural-object-name (e.g. https://data.4dnucleome.org/biosamples/) and the identifiers that
can be used for collections are referenced in this table.

To submit supplementary metadata files, such as pdfs or images, use the Image or Document schemas,
and include the path of the files in the *attachment* column. The path should be the full path to the
supplementary file.

• All experiments must be part of a replicate set - even if it is a set containing only a single experiment.

• When preparing your submission you should determine how many replicate sets you will be submit-
ting and create an entry - with an alias and preferably an informative description - for each set in the
ExperimentSetReplicate sheet.

static/img/docs/submitting-metadata/repsets_w_desc.png

• Then when entering information about individual experiments on the specific Experiment_ sheet
you should:

1. enter the alias for the replicate set to which the experiment belongs

2. indicate the bioreplicate and technical replicate number for that experiment.

• In the example below the replicate set consists of five experiments categorized into one of two
bioreplicates - bio_rep_no 1 and bio_rep_no 2, each of which contains three and two technical
replicates, respectively.

static/img/docs/submitting-metadata/expts_w_rep_info.png

5.2.22.3 Submitting Excel Workbooks

• The 4DN DCIC website has an REST API for fetching and submitting data.

• In our Submit4DN package the import_data script utilizes an organized bundle of REST API
commands that parse the Excel workbook and submit the metadata to the database for you.

• The get_field_info script that is also part of the package can be used to generate the Excel
workbook templates used for submission for all or a selected set of worksheets.

• The package can be installed from pypi.

The Submit4DN package is registered with Pypi so installation is as simple as:

pip3 install submit4dn

If it is already installed upgrade to the latest version:

pip3 install submit4dn --upgrade

5.2. Force compiling 59

https://data.4dnucleome.org/biosamples/
schema_info.md
/static/img/docs/submitting-metadata/repsets_w_desc.png
/static/img/docs/submitting-metadata/expts_w_rep_info.png

FourFront

The source code for the submission scripts is available on github.

Note if you are attempting to run the scripts in the wranglertools directory without installing the package,
then in order to get the correct sys.path you need to run the scripts from the parent directory as modules
using the -m flag.

python3 -m wranglertools.import_data filename.xls

• You can use import_data either to upload new items or to modify metadata fields of existing
items.

• This script will accept the excel workbook you prepared, and will upload every new item in the
sheets.

• This script is also used to upload data files to the 4DN data store - this is done in a separate step after
your File metadata has been successfully uploaded.

You will need to generate access keys to submit data. How to get these is described here.

• Before actually updating the 4DN database you can check your spreadsheet for formatting and miss-
ing required data by doing a ‘dry run’.

• When you run the import_data script on your metadata excel workbook without the --update
or --patchall arguments the system will test your data for compatibility with our metadata
structure and report back to you any problems.

• The metadata will not be submitted to the database, so you can take advantage of this feature to test
your excel workbook.

import_data My_metadata.xls

• When you submit your metadata, if a row in any sheet corresponds to a new item that has not
previously been submitted to the 4DN database you will be POSTing that data via the REST API.

• Most of your entries in the first submission will be POSTs. To activate posting you need to include
the --update argument to import_data.

import_data My_metadata.xls --update

• If you need to modify an existing item, you can use the patch function.

• To be able to match your item to the one on the server, a pre-existing identifier must be used in the
spreadsheet.

• If you included an alias when you posted the item, you can use this alias to reference the existing
item in the database – uuids, @ids, or accessions can also be used to reference existing items in the
database.

• If you don’t use the --patchall argument when you run import_data and an existing entry is
encountered, the script will prompt you ‘Do you wish to PATCH this item?’. You will be prompted
for every existing item that is found in your workbook.

• The --patchall argument will allow automatic patching of each existing item, bypassing the
prompts.

import_data My_metadata.xls --patchall

• If for some reason the script fails in the middle of the upload process or errors are encountered for
certain items, some items will have been posted while others will have not.

• When you fix the problem that caused the process to terminate, you can rerun the script using both
the --patchall and --update arguments.

60 Chapter 5. Notes on SASS/SCSS

https://github.com/4dn-dcic/Submit4DN

FourFront

• Those items that had already been posted will be ‘patched’ using the data in the sheet and the items
that had not been posted yet will be loaded.

import_data My_metadata.xls --patchall --update

• Functionality that will allow the deletion of all the data in a single field of an existing Item ex-
ists - however this can be a potentially dangerous operation. If you determine that you need this
functionality please contact us at the DCIC for more information.

• The 4DN databased distinguishes two main categories of files:

1. files that support the metadata, such as Documents or Images

2. data files for which metadata is gathered and are specified in specific File items/sheets (eg.
FileFastq).

• The first category can be uploaded along with the metadata by using the “attachment” fields in the
excel workbook (eg. pdf, png, doc, . . .) as described previously.

• The second category includes the data files that are the results of experiments, eg. fastq files from
HiC experiments.

– These data files are bound to a File item with a specific type eg, FileFastq that contains relevant
metadata about the specific result file.

– Metadata for a file should be submitted as part of your experiment metadata submission as
described above.

– The actual file upload to the 4DN file store in the cloud will happen in a subsequent submission
step. NOTE that the filename is not part of the initial File metadata submission.

– This second step will be triggered by a successful metadata submission that passes review by
the 4DN DCIC.

To upload your files:

1. use the file submission excel sheet provided

2. copy paste all your file (FileFastq) aliases from your metadata excel sheet to the aliases field of the
file submission sheet

3. Under filename enter the full paths to your files

4. use import_data with the --patchall argument to start upload.

The DCIC automatically checks file md5sums to confirm successful upload and to ensure that there are
no duplicate files in the database.

Tip Upload using ftp is also supported, however the process currently transfers the files to your hard drive,
uploads them to our system, and then deletes the copy from your local hard drive. The files are processed
sequentially so you need to have at least the amount of free space on your hard drive as the size of the
largest file you wish to upload. In addition, you must include your ftp login credentials in the ftp url,
which is definitely not a security best practice. For these reasons, if at all possible, it is recommended
to install the Submit4DN package onto the server hosting the files to be submitted and use import_data as
described above. However, if that is not an option then your ftp urls should be formatted as follows:

ftp://username:password@hostname/path/to/filename

To replace a file that has already been uploaded to 4DN - that is to associate a different file with
existing metadata,

• in the filename field include the new path for the existing alias

5.2. Force compiling 61

FourFront

• NOTE that every time you patch with a filename (even if it is the same filename) the file will be
uploaded. Please use care when including a filename in your File metadata to avoid unneces-
sary uploads.

• We plan to avoid this issue in future releases by pre-checking md5sums.

5.2.22.4 Generate a new Template Workbook

To create the data submission xls forms, you can use get_field_info, which is part of the Submit4DN
package.

The scripts accepts the following parameters:.

Examples generating a single sheet:

To get the complete list of relevant sheets in one workbook:

5.2.23 Schema information

Schema Filename Worksheet Name Collection Name(s)
analysis_step.json AnalysisStep analysis-steps, analysis_step
award.json Award award(s)
biosample.json Biosample biosample(s)
biosample_cell_culture.json BiosampleCellCulture biosample-cell-cultures, biosample_cell_culture
biosource.json Biosource biosource(s)
construct.json Construct construct(s)
document.json Document document(s)
enzyme.json Enzyme enzyme(s)
experiment_atacseq.json ExperimentAtacseq experiments-atacseq, experiment_atacseq
experiment_capture_c.json ExperimentCaptureC experiments-capture-c, experiment_capture_c
experiment_chiapet.json ExperimentChiapet experiments-chiapet, experiment_chiapet
experiment_hi_c.json ExperimentHiC experiments-hi-c, experiment_hi_c
experiment_mic.json ExperimentMic experiments-mic, experiment_mic
experiment_repliseq.json ExperimentRepliseq experiments-repliseq, experiment_repliseq
experiment_seq.json ExperimentSeq experiments-seq, experiment_seq
experiment_set.json ExperimentSet experiment-sets, experiment_set
experiment_set_replicate.json ExperimentSetReplicate experiment-set-replicates, experiment_set_replicate
file_calibration.json FileCalibration files-calibration, file_calibration
file_fastq.json FileFastq files-fastq, file_fastq
file_processed.json FileProcessed files-processed, file_processed
file_reference.json FileReference files-reference, file_reference
file_set.json FileSet file-sets, file_set
file_set_calibration.json FileSetCalibration file-set-calibrations, file_set_calibration
genomic_region.json GenomicRegion genomic-regions, genomic_region
image.json Image image(s)
imaging_path.json ImagingPath imaging-paths, imaging_path
individual_human.json IndividualHuman individuals-human, individual_human
individual_mouse.json IndividualMouse individuals-mouse, individual_mouse
lab.json Lab lab(s)
modification.json Modification modification(s)
ontology.json Ontology ontology(s)

Continued on next page

62 Chapter 5. Notes on SASS/SCSS

FourFront

Table 1 – continued from previous page
Schema Filename Worksheet Name Collection Name(s)
ontology_term.json OntologyTerm ontology-terms, ontology_term
organism.json Organism organism(s)
protocol.json Protocol protocol(s)
publication.json Publication publication(s)
publication_tracking.json PublicationTracking publication-trackings, publication_tracking
quality_metric_bamqc.json QualityMetricBamqc quality-metrics-bamqc, quality_metric_bamqc
quality_metric_fastqc.json QualityMetricFastqc quality-metrics-fastqc, quality_metric_fastqc
quality_metric_flag.json QualityMetricFlag quality-metric-flags, quality_metric_flag
quality_metric_pairsqc.json QualityMetricPairsqc quality-metrics-pairsqc, quality_metric_pairsqc
software.json Software software(s)
sop_map.json SopMap sop-maps, sop_map
summary_statistic.json SummaryStatistic summary-statistics, summary_statistic
summary_statistic_hi_c.json SummaryStatisticHiC summary-statistics-hi-c, summary_statistic_hi_c
target.json Target target(s)
treatment_agent.json TreatmentAgent treatments-agent, treatment_agent
treatment_rnai.json TreatmentRnai treatments-rnai, treatment_rnai
user.json User user(s)
vendor.json Vendor vendor(s)
workflow.json Workflow workflow(s)
workflow_mapping.json WorkflowMapping workflow-mappings, workflow_mapping
workflow_run.json WorkflowRun workflow-runs, workflow_run
workflow_run_sbg.json WorkflowRunSbg workflow-runs-sbg, workflow_run_sbg

5.2.24 Web Submission

• An online submission interface has been developed to help with the submission of 4DN metadata.

• This web interface is especially useful for;

– submitting one or a few experiments

– editing the metadata for an existing experiment

– understanding object dependencies in our metadata schemas (for example learning that every
experiment needs a type and a biosample).

• The system has been developed as a submission wizard that allows both the stepwise creation of
database objects and full submission of an entire experiment with all required associated objects.

• We do recommend you review the information on the Getting Started page to get some tips on
important concepts like aliases and Replicate Sets.

5.2.24.1 Creating New Items

There are several possible ‘entry’ points to a web submission

• You may want to start by entering metadata for an ExperimentSetReplicate object or an Experiment
object of a particular type (eg. a Hi-C experiment or Microscopy experiment).

• You can start by creating experiments and then as a subsequent step associating multiple experiments
with a Replicate Set.

• You can start your submission at a lower level item type (eg. Biosample) if that makes things easier
for you.

5.2. Force compiling 63

FourFront

To create a new item

1. Navigate to an item of the type for which you want to create metadata.

2. You can find Create and Edit links near the top of a page for most items in our system. NOTE You
will not see one or both of these buttons if you lack permission to perform these operations, which
may be due to the status of the item and/or your role in our system.

#. When you click Create the first thing you will be asked is to create an alias for your item. This is a lab
specific unique identifier for this object taking the form of xxxx:xxxxx where the portion before the colon
is a lab designation eg. 4dndcic and the portion after is an identifier that you choose that is unique within
your lab group (see section on using aliases here). #.

When you submit your alias you will be brought to a page where you can start entering meta-
data.

• You will see two gray bars Fields and Linked Objects and selecting the + will expand
those bars to show the fields and objects that can be entered.

• Hovering your pointer over the i next to Navigation pops up an explanation for what the
different colors of the objects displayed in the Navigation tree.

• If a field or object are required that is indicated.

• The Fields section is where you fill out basic fields that are not linked to other database
objects.

• In the Linked Objects section you can link other Objects to the one you are working on,
either by selecting from a list of available existing objects or by creating a new object of
the type needed for the particular field it is linked to.

• As you create or add linked Objects you will see the Objects listed in the Navigate section
change colors accordingly.

• You can use the Navigate section to review what you have submitted, validated and what
remains to be added.

1. And finally when all your linked objects are submitted and validated (green) you can validate and
submit the object to complete your submission.

WARNING: Be careful with the BACK and RELOAD buttons. Currently, if you choose to create a
new linked object and then decide you actually don’t want to or should have actually chosen an existing
object you still should create the object with only the minimum information required, Validate and then
Submit it. You will then be taken back to the previous form you were working on and be able to remove
the unwanted object. If you try to navigate back to the previous page using your browser buttons you will
lose the previously unsubmitted changes. We are working to improve this aspect of the interface.

5.2.24.2 Editing Existing Objects

• You can use the online submission interface to make edits to existing items providing you have
permission to do so.

• If an object has been ‘released’ either to the 4DN project or to the public it can no longer be changed.

• If the object has an ‘in review’ status then you can make changes to fields provided you are the
submitter of that object or a submitter for the lab that submitted the object.

WARNING: Please take care to be sure that the object you are editing is really the one you want to
change.

1. Navigate to that objects page and if the object is editable then you should see an Edit button.

64 Chapter 5. Notes on SASS/SCSS

FourFront

2. After clicking the Edit button you will be brought to a page as described above.

3. This time if you click on the + in the Fields or Linked Objects sections you will see the existing
values, to which you can make changes as needed.

4. Then validate and submit to commit the changes to the system.

5.2. Force compiling 65

	Overview
	Installation
	Step 0: Obtain Credentials
	Step 1: Verify Homebrew Itself
	Step 2: Install Homebrewed Dependencies
	Step 3: Running Make
	Step 4: Running the Application Locally

	Running tests
	Building Javascript
	Notes on SASS/SCSS
	Compiling “on the fly”
	Force compiling
	Overview of encoded Application
	SOURCE CODE ORGANIZATION
	BACKEND
	Guts
	views
	snovault.py
	AuthZ
	FRONTEND
	Use of NodeJS
	About ReactJS
	Component Pages
	Boilerplate and Parent Classes
	User Pages (Templates)
	Views and Sections (Templates)
	Parameters (to be supplied in POST object or via GET url parameters):

	Search Documentation
	Security
	ACL
	Roles
	Permissions
	Default Item permissions
	User Roles
	Process overview
	Additional info

	Authentication and Authorization
	Authentication
	Authorization
	Permissions

	FF-Docker (Local)
	Installing Docker
	Configuring FF Docker
	Building FF Docker
	Accessing FF Docker at Runtime
	Alternative Configuration with Local ElasticSearch
	Common Issues
	Docker Command Cheatsheet

	FF-Docker (Production)
	Building an Image
	Tagging Strategy
	Common Issues

	Database Documentation
	PostgreSQL RDB
	Booting Up Local Database
	Purpose
	Prerequisites
	Back It Up
	Load It In

	Higlass Visualization
	API Call
	Foursight finds reference files
	File Higlass Items
	Experiment Set (Processed Files) Higlass Items
	Experiment Set (Other Processed Files aka Supplementary Files) Higlass Items

	Loading Inserts
	bin/load-data
	App configuration

	Dependencies and Invalidation
	Total Reindexing
	Back references (rev-links)
	Isolation level considerations

	Local Deployment Troubleshooting
	20190218 Pillow 3.1.1 install error on Mac 10.14.3, Xcode 10.1 (command line tools 10.1 10B61) - Koray
	20190219 Server does not start on Mac 10.14.3, Xcode 10.1 (command line tools 10.1 10B61) - Koray

	Static Pages
	HTML Content
	Markdown Content
	Text/String Content
	Simplification & Future < THIS WILL SUPERCEDE SYSINFOS MAPPING >
	BELOW SYSINFOS APPROACH WILL BE DEPRECATED SOON BUT FOR NOW STILL FUNCTIONAL
	Static Section Header @type Mapping

	Reverse links
]

	UNIT Testing
	Python : what & where
	JavaScript

	Load Testing with Locust
	Supported Environments
	Config.json
	<env>.json
	Command Line Arguments

	Introduction for Users
	Notes for prospective submitters

	Getting Started (User)
	Overview
	Notes on Experiments and Replicate Sets
	Referencing existing objects
	Getting Added as a 4DN User or Submitter
	Getting Connection Keys for the 4DN-DCIC servers

	Account Creation
	If you are a data submitter for a 4DN lab or are new to the project
	Signing in with your institutional email address

	Overview
	Basic Biosample Metadata
	Biosample Fields

	Cell Culture Metadata
	BiosampleCellCulture fields

	Excel Submission
	Overview
	Preparing Excel Workbooks
	Submitting Excel Workbooks
	Generate a new Template Workbook

	Schema information
	Web Submission
	Creating New Items
	Editing Existing Objects

