

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Demo Machines

To launch a demo machine you need an access key (log into AWS console to create one under IAM) which you place in ~/.aws/credentials (see _aws getting started) which is shared with the aws cli utility:

[default]
aws_access_key_id=AKIA...
aws_secret_access_key=abc123...

In ~/.boto configure your default region:

[Boto]
ec2_region_name = us-west-2

To deploy your currently checked out branch, run:

$ bin/deploy --instance-type m4.xlarge

After a few moments, it will return the domain name of your instance:

For faster indexing you can use c4.4xlarge, but after indexing stop instance at console and restart it with an m4.xlarge or t2.large

branchname-789abc-username.instance.encodedcc.org

The deployment can take some time, especially if it’s been a while since the last full database backup.

	Once the demo is indexed ratchet down the instance size

	
	Login to https://us-west-2.console.aws.amazon.com/ec2/v2/home?region=us-west-2#Instances:sort=instanceState

	Select your instance

	Select Action - Instance State - Stop

	Select Action - Instance Settings - Change Instance Type

To login to a demo machine, we first need to sign your ssh public key [https://www.digitalocean.com/community/articles/how-to-create-an-ssh-ca-to-validate-hosts-and-clients-with-ubuntu] (the one uploaded to github, normally ~/.ssh/id_rsa.pub) with the demo_users_ca private key. This creates an id_rsa-cert.pub which you should place in your ~/.ssh/ alongside your keypair:

$ ssh-keygen -s demo_users_ca -I user_myusername -n ubuntu -V +520w myusername.pub

Note that you need a fairly recent version of OpenSSH for this to work, Mac OS 10.6 and CentOS 6.4 are known not to work (though you can install a newer openssh with homebrew) but Ubuntu 14.04 and Mac OS 10.9 do work.

You can then ssh into the demo machine:

$ ssh ubuntu@ec2...compute.amazonaws.com

You can then follow the deployment progress with:

$ tail -f /var/log/cloud-init-output.log

Authorization of Demo Machines

Demo machines restore their database from the current Postgres WAL archive stored in S3 by WAL-E.
The demo machines are granted read access via IAM roles [http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html] assigned to them by the deploy script.

Advanced Search

Introduction

The initial implementation of search for encoded could only search
for either string matches or checking to see if particular object
attributes match.

See: src/encoded/tests/features/search.feature for several examples

However BoxIII shows one query illustrating the new advanced query type.

Implementation

Laurence added a hook to pass lucene queries to elastic search through
via the searchTerm query. Either by constructing urls, or entering the
query into the search box.

The function that parses the advanced query is called
prepare_search_term() and is found in src/encoded/search.py

It uses a parser written in a dependency called “lucenequery”
which is available at: https://github.com/lrowe/lucenequery

Usage

The advanced query is triggered by starting a query with

@type:<encodedobject type>

and then using something very close to lucene queries [https://lucene.apache.org/core/2_9_4/queryparsersyntax.html]

Examples

You can query by constructing a url like
https://www.encodeproject.org/search/?searchTerm=%40type%3AItem+aliases%3Abarbara-wold%2A

However you can also enter the the query into the search box without url encoding
which is vastly easier to read and will be used for the examples.

To find all the experiments created in a particular date window you can do the
following

@type:Experiment date_created:[2016-01-01 TO 2016-01-31]

One could also try other classes like Biosample, or even Item if one
wanted to find all the objects created in a particular window

Lucene also supports substring matches, so another query that
would be difficult using the original syntax is to find all the
objects with a particular alias prefix.

It is also important to note that for colons “:” that appear in
the string being searched, will need to be escaped. “:”

@type:Item aliases:barbara-wold\:*

One can also do logical operators. This query finds 4 biosamples with aliases and
obtained in a specfic date range

@type:Item aliases:barbara-wold\:* AND date_obtained:[2014-05-01 TO 2014-12-01]

This query removes two of the hits from the previous alias date_obtained query
by including a NOT query on the description. (Which appears to be the default
field searched)

@type:Item aliases:barbara-wold\:* AND date_obtained:[2014-05-01 TO 2014-12-01] NOT "adrenal gland"

Authentication and authorization

Background reading: Pyramid’s security system [http://docs.pylonsproject.org/projects/pyramid/en/latest/narr/security.html].

I extend Pyramid’s built in ACL based security system with my pyramid_localroles [https://pypi.python.org/pypi/pyramid_localroles/] plugin so we can map permissions to roles (e.g. ‘role.lab_submitter’) rather than directly to users.

For more on roles and local roles see:

	http://docs.zope.org/zope2/zope2book/Security.html#different-levels-of-access-with-roles

	http://www.sixfeetup.com/blog/basic-roles-and-permissions-in-plone

	https://www.packtpub.com/books/content/plone-4-development-understanding-zope-security

Authentication

An authentication policy identifies who you are, returning a user id.
We use pyramid_multiauth to extract authentication from any of Persona [https://www.persona.org/], session cookies, or HTTP basic auth (access keys).

Authorization

From the authenticated user id, the groupfinder in authorization.py maps the user id to a number of “principals”, user or group identifiers.
We lookup the user object and add groups based on the properties:

	groups [<string>..] - global groups like ‘admin’. Generates: group.admin.

	submits_for: [lab..] - allow editing based on object.lab property. Generates: submits_for.<lab-uuid>.

	viewing_groups: [<string..>] - allow viewing of in progress data based on object.award.viewing_group (ENCODE, GGR, REMC.) Generates: viewing_group.ENCODE.

Views are protected by permissions (view, edit, etc.)

When you PUT to /experiment/ENCSR123ABC/ then Pyramid will traverse to the experiment object (see: Location aware resources [http://docs.pylonsproject.org/projects/pyramid/en/latest/narr/resources.html#location-aware]) and lookup a view for to PUT which is protected with the edit permission.

At this point my pyramid_localroles plugin steps in and extends the authenticated principals passed to the ACLAuthorizationPolicy (the global groups that apply across the whole site) with location aware local roles such as role.lab_submitter and role.viewing_group_member by reference to the __ac_local_roles__ method (base.py) of the context object which returns a mapping based on the context object’s ‘lab’ and award property, e.g:

{
 'submits_for.<context-lab-uuid>': ['role.lab_submitter'],
 'viewing_group.<context-award-viewing_group>'': ['role.viewing_group_member'],
}

The ACL authorization policy will then lookup the Access Control List on the experiment object (the ‘context’) by looking at its __acl__ property/method, and then the __acl__ property/methods of its parents (the /experiments collection and the root object.)
We define an __acl__ method on the EncodedRoot object (root.py), Collection and Item objects (base.py.)
The __acl__ method for an Item returns a different ACL list depending on the object’s ‘status’.
This way we allow lab submitters to edit their own ‘in progress’ objects but not ‘released’ objects.

Permissions

	add

	add_unvalidated (admin)

	audit - view audits on an individual content item

	edit

	edit_unvalidated (admin)

	expand (system)

	forms - who can see forms

	impersonate (admin)

	import_items (admin)

	index (system)

	list

	search

	search_audit - global permission to see audits in search results

	submit_for_any (admin)

	view

	view_details - protection of user contact information

	view_raw (admin)

	visible_for_edit - hiding deleted child objects from edit

This gnu grep expression will extract a list of permissions (brew tap homebrew/dupes; brew install grep):

$ ggrep --no-filename -roP "(?<=permission[=(]['\"])[^'\"]+" src/ | sort | uniq

 Log into existing instance: (ubuntu@v{YY}.production.encodedcc.org) - {XX} is the new version number

$ sudo -i -u postgres /opt/wal-e/bin/envfile –config ~postgres/.aws/credentials –section default –upper – /opt/wal-e/bin/wal-e –s3-prefix=”$(cat /etc/postgresql/9.3/main/wale_s3_prefix)” backup-push /var/lib/postgresql/9.3/main

In a clean checkout of master

$ git tag -am v{XX}.0 v{XX}.0
$ git push -u origin v{XX}.0

For a single, combined (ES/Python 1 datanode) instance

$ bin/deploy –candidate –instance-type c4.4xlarge –profile-name production -n v{XX}-b v{XX}.0

“production” must be a key on encode-prod AWS project with valid key/password in .aws/credentials

$ bin/deploy –test –instance-type c4.4xlarge -n v{XX}-test -b v{XX}.0 — See Last section

Or just as a demo instance to avoid the switchover

$ bin/deploy –instance-type c4.4xlarge -n v{XX}-test -b v{XX}.0

For a clustered instance - 5 data nodes (current production as of 5/2016)

$ bin/deploy -b v{XX}.0 –elasticsearch yes –cluster-name v{XX}-cluster –cluster-size 5 –profile-name production –name v{XX}-data –instance-type m4.xlarge
$ bin/deploy -b v{XX}.0 -n v{XX}-master –cluster-name v{XX}-cluster –profile-name production –candidate –instance-type c4.8xlarge

“production” must be a key on encode-prod AWS project with valid key/password in .aws/credentials

Once the master is up, you can run:
$ curl localhost:9200/_cluster/health?pretty

To make sure any cluster nodes are running correctly, and swap them out if necessary.
You can create a single node with something like:
$ bin/deploy -b v{XX}.0 –elasticsearch yes –cluster-name v{XX}-cluster –cluster-size 1 –profile-name production –name v{XX}-dataX –instance-type m4.xlarge

Where X is the node you just terminated. Note cluster names must match!

and for DEV (non candidate/–test just as demo)
$ bin/deploy -b v{XX}.0 –elasticsearch yes –cluster-name v{XX}-test-cluster –cluster-size 5 –name v{XX}-test-data –instance-type m4.xlarge
$ bin/deploy -b v{XX}.0 -n v{XX}-test-master –cluster-name v{XX}-test-cluster –instance-type c4.8xlarge

To set replicas (this should move to automatic installation):
$ curl -XPUT ‘localhost:9200/_all/_settings’ -d ‘{“index”: {“number_of_replicas”: 2}}’

This will set cluster status to “yellow”; probably best to wait for green for full release.

== Create and install keys ==

THis is all done only on the master node, v{XX}-master.production.encodedcc.org

Go to the AWS console and create new write-encoded-backups-prod access key and add to new instance ~postgres/.aws/credentials (write-encode-backups and upload-encode-files are AWS users; they can each only have 2 keys so you have to delete the old inactive ones)
$ sudo -u postgres mkdir ~postgres/.aws
$ sudo -u postgres touch ~postgres/.aws/credentials
$ sudo -u postgres chmod o-r ~postgres/.aws/credentials
$ sudo -u postgres nano ~postgres/.aws/credentials

Create new upload-encode-files access key
$ sudo -u encoded nano ~encoded/.aws/credentials

Set these new keys inaactive

Send email to ENCODE_DEVELOPERS@LIST.NIH.GOV announcing write downtime (currently 15-20 min)

On the Old production instance:
$ sudo mv /var/lib/postgresql/9.3/main/recovery.done /var/lib/postgresql/9.3/main/recovery.conf
$ sudo service postgresql restart

downsize test server to m4.xlarge, wait until dns is active

Edit nginx proxy server (encode-proxy.stanford.edu)
ubuntu@ip-172-31-31-254:~$ sudo nano /etc/nginx/nginx.conf
ubuntu@ip-172-31-31-254:~$ sudo service nginx reload

Edit BACKUP proxy in case Stanford fails us. proxy.production.encodedcc.org

ubuntu@ip-172-31-41-227:~$ sudo nano /etc/nginx/nginx.conf # switch server backend
ubuntu@ip-172-31-41-227:~$ sudo service nginx reload

	Reloading nginx configuration nginx

Make old aws access key inactive

Make new aws access key active

Wait for /_indexer snapshot on new instance to match snapshot on old instance
(both should be status: “waiting” and recovery: true)

- echo “include ‘master.conf’” | sudo tee -a /etc/postgresql/9.3/main/postgresql.conf
- sudo pg_ctlcluster 9.3 main reload
- sudo pg_ctlcluster 9.3 main promote
- cd /srv/encoded
- sudo -i -u encoded bin/batchupgrade production.ini –app-name app
- sudo -i -u postgres /opt/wal-e/bin/envfile –config ~postgres/.aws/credentials –section default –upper – /opt/wal-e/bin/wal-e –s3-prefix=”$(cat /etc/postgresql/9.3/main/wale_s3_prefix)” backup-push /var/lib/postgresql/9.3/main

Save logs from old instance

$ mkdir v{YY}
$ scp -r v{YY}.production.encodedcc.org:/var/log/apache2 v{YY}/apache2
$ aws –profile production s3 cp –recursive v{YY} s3://encoded-logs/production/v{YY}

	# Add Wal-e backup to S3 via Crontab

	
	$ sudo crontab -e

	select nano

add this line for midnight updates

$ 00 7 * * * sudo -i -u postgres /opt/wal-e/bin/envfile –config ~postgres/.aws/credentials –section default –upper – /opt/wal-e/bin/wal-e –s3-prefix=”$(cat /etc/postgresql/9.3/main/wale_s3_prefix)” backup-push /var/lib/postgresql/9.3/main

save and close

Update test server IF it was started as –test; demo mode is already Master

Doing this after bin/batchupgrade on production means no need to do that here too (changes come through postgres replication.)

New test instance

ubuntu@ip-172-31-1-25:~$ sudo nano /etc/postgresql/9.3/main/custom.conf # archive_mode = off
ubuntu@ip-172-31-1-25:~$ sudo pg_ctlcluster 9.3 main reload
ubuntu@ip-172-31-1-25:~$ sudo pg_ctlcluster 9.3 main promote

Database Documentation:

The (encodeD) system uses a Postgres implementation of a document store of a JSONLD_ object hierarchy. Multiple view of each document are indexed in Elasticsearch_ for speed and efficient faceting and filtering. The JSON-LD object tree can be exported from Elasticsearch with a query, converted to RDF_ and loaded into a SPARQL_ store for arbitrary queries.

POSTGRES RDB

When an object is POSTed to a collection, and has passed schema validation, it is inserted into the Postgres object store, defined in storage.py_.

There are 7 tables in the RDB. Of these, Resource_ represents a single URI. Most Resources (otherwise known as Items or simpley “objects” are represented by a single PropSheet_, but the facility exists for multiple PropSheets per Resource (this is used for attachments and files, in which the actual data is stored as BLOBS instead of JSON).

The Key_ and Link_ tables are indexes used for performance optimziation. Keys are to find specific unique aliases of Resources (so that all objects have identifiers other than the UUID primary key), while Links are used to track all the JSON-LD relationships between objects (Resources). Specifically, the Link table is accessed when an Item is updated, to trigger reindexing of all Items that imbed the updated Item.

The CurrentPropSheet_ and TransactionRecord_ tables are used to track all changes made to objects via transactions.

** A LOCAL SERVER **
The dev-servers command completely drops and restarts a local copy of postgres db. Posts all the objects in tests/data/inserts (plus /tests/data/documents as attachments). Then indexes them all in local elastic search.
but these dbs are both destroyed when you kill the dev-servers process

** CREATING A SPARQL STORE **

After building out the software, it will create an executable called json_rdf

bin/jsonld-rdf ‘https://www.encodeproject.org/search/?type=Item&frame=object&limit=all’ -s n3 -o encode-rdf.n3

The n3 file can be imported into a SPARQL using, for example, Virtuoso (http://semanticweb.org/wiki/Virtuoso.html_) or YasGUI http://yasgui.org/_

The query may take upwards of 20 minutes.

There are other output options documented in src/commands/json_rdf.py (XML, Turtle, trix others), you can also curl the URL above directly and write a json file (set accept-headers or use &format=json), and pass the file to bin/jsonld-rdf

Dependency tracking and invalidation

Keeping elasticsearch in sync.

The /_indexer wsgi app (es_index_listener.py) drives the incremental indexing process. When a new transaction is notified by postgres (or after 60 seconds) it calls the /index view (indexer.py) which works out what needs to be reindexed. The actual reindexing happens in parallel in multiprocessing subprocesses (mpindexer.py.)

When rendering a response, we record the set of embedded_uuids and linked_uuids used.

	embedded_uuids are those objects embedded into the response or whose properties have been consulted in rendering of the response. Any change to one of these objects should cause an invalidation. (See Item.__json__.)

	linked_uuids are the objects linked to in the response. Only changes to their url need trigger an invalidation. (See Item.__resource_url__.)

When modifying objects, event subscribers keep track of which objects where updated and their resource paths before and after the modification. This is used to record the set of updated_uuids and renamed_uuids in the transaction log. (See indexing.py.)

The indexer process listens for notifications of new transactions. With the union of updated_uuids and union of renamed_uuids across each transaction in the log since its last indexing run, it performs a search for all objects where embedded_uuids intersect with the updated_uuids or linked_uuids intersect with the renamed_uuids. The result is the set of invalidated objects which must be reindexed in addition to those that were modified (recorded in updated_uuids.)

Where an object’s url depends on other objects – Page whose url includes its ancestors in its path, or Target whose url includes a property from its referenced organism – we must ensure that linked_uuid dependencies to those other objects are recorded in addition the object itself when linked. (See Page.__resource_url__ and Target.__resource_url__.)

Total Reindexing

Cases can arise where a total reindexing needs to be triggered.
>curl -XDELETE ‘localhost:9200/encoded/meta/indexing’ will specifically force it.

localhost:9200/encoded/meta/indexing stores the document that keeps track of incremental indexing. The indexer script checks for that document when deciding between full index and indexing only the recently invalidated documents. It has the benefit of keeping the old-yet-to-be-indexed data online, especially if it’s a production instance.

Alternatively, >curl -XDELETE ‘http://localhost:9200/encoded/’ will delete the entire index along with the mapping information for schema objects. Although it does trigger indexing, missing mapping information makes the documets unsearcheable. Mapping in elasticsearch describes how each field of each object should be tokenized/analyzed/indexed for searching.

Back references

In a parent-child relationship, it is the child object that references the parent object. A parent response often renders a list of child objects, and that list my be filtered to remove deleted or unpublished child objects.

We want to ensure that parent responses are invalidated when a child object’s state changes, so that it would now be included in its parent’s list of child objects when it was not before. A parent response must therefore include all potentially included child objects in its embedded_uuids, which is done by accessing the child status property through the Item.__json__ method.

We must also invalidate a parent response when a new child is added (either a new object of changing the parent referenced.) This is done adding the parent uuid to the list of updated_uuids recorded on the transaction adding/modifying the child. (See indexing.py invalidate_new_back_revs.)

Isolation level considerations

Postgres defaults to its lowest isolation level, READ COMMITTED: http://www.postgresql.org/docs/9.3/static/transaction-iso.html

For invalidation of back references of new child objects only READ COMMITTED isolation is necessary as invalidated back references are calculated from the updated objects properties.

However, writes must be at least REPEATABLE READ in order for overalapping PATCHes to apply safely.

During recovery indexing uses READ COMMITTED isolation. Indexed objects may be internally inconsistent if there are concurrent updates to embedded objects. But indexing is still eventually consistent as any concurrent update will invalidate the object and it will be reindexed later.

To avoid internal possible internal inconsistancies of indexed objects, SERIALIZABLE isolation is required. It is used once it becomes available when recovery is complete.

The object lifecycle

Retrieval (GET)

Data can be retrieved from the database in one of a few “frames” which specify how much data is in the returned object.
The object and embedded frames are indexed in elasticsearch, the page properties are applied at “GET”. Usually you will specify format=json (or set content-type: application/json) if you wish to return a JSON object directly.

	frame=raw

Objects are stored in the DB “raw” - with only the properties that are submitted with links as uuids.

	frame=object

This is the raw object with additional “@properties” (@id, @type) and calculated properties (defined in python code “types” package).

	frame=edit

This is the frame=object without calculated properties

	frame=embedded

This is the frame=object object with all the embedded properties (also specified in the “types” package)

	frame=page

This is the default object returned if frame is not specified. It is the frame=embedded object with several UI and form properties added including @context, audit, and actions.

Submission (POST)

POST /biosample:

{
 "biosample_type": "DNA",
 "biosample_term_id": "UBERON:349829",
 "aliases": ["my-lab:sample1"],
 "award": "my-award",
 "lab": "my-lab",
 "source": "some-source",
 "organism": "human"
}

Validation

	Does submission conform to schema?

	Structural conformance

	Link resolution

	Value format validation

	Permission checking

Link resolution

Links are resolved relative to their configured base url, normally their collection.
Absolute paths and UUIDs are also valid, as are aliases and other uniquely identifying properties:

{
 "award": "fae1bd8b-0d90-4ada-b51f-0ecc413e904d",
 "lab": "b635b4ed-dba3-4672-ace9-11d76a8d03af",
 "source": "1d5be796-8f80-4fd4-b6c7-6674318657eb",
 "organism": "7745b647-ff15-4ff3-9ced-b897d4e2983c"
}

Default values

Static and calculated defaults:

{
 "uuid": "7c245cea-7d59-45fb-9ebe-f0454c5fe950"
 "accession": "ENCBS000TST",
 "date_created": "2014-01-20T10:30:00-0800",
 "status": "IN PROGRESS",
 "submitted_by": "bb319896-3f78-4e24-b6e1-e4961822bc9b"
}

Storage

Resource record created for uuid with item_type:

uuid: "7c245cea-7d59-45fb-9ebe-f0454c5fe950"
item_type: "biosample"

Raw properties:

{
 "biosample_type": "DNA",
 "biosample_term_id": "UBERON:349829",
 "aliases": ["my-lab:sample1"],

 "award": "fae1bd8b-0d90-4ada-b51f-0ecc413e904d",
 "lab": "b635b4ed-dba3-4672-ace9-11d76a8d03af",
 "source": "1d5be796-8f80-4fd4-b6c7-6674318657eb",
 "organism": "7745b647-ff15-4ff3-9ced-b897d4e2983c",

 "accession": "ENCBS000TST",
 "date_created": "2014-01-20T10:30:00-0800",
 "status": "IN PROGRESS",
 "submitted_by": "bb319896-3f78-4e24-b6e1-e4961822bc9b"
}

Rows are inserted to enforce unique constraints:

keys: [
 ("accession", "ENCBS000TST"),
 ("alias", "my-lab:sample1"),
]

and to maintain referential integrity:

links: [
 ("award", "fae1bd8b-0d90-4ada-b51f-0ecc413e904d"),
 ("lab", "b635b4ed-dba3-4672-ace9-11d76a8d03af"),
 ("source", "1d5be796-8f80-4fd4-b6c7-6674318657eb"),
 ("organism", "7745b647-ff15-4ff3-9ced-b897d4e2983c"),
 ("submitted_by", "bb319896-3f78-4e24-b6e1-e4961822bc9b"),
]

	Also:

	
	additional property sheets

	transaction logging

	object versioning

Rendering

* raw properties
 -> link canonicalization
 -> calculated properties
 -> embedding
 -> page expansion

Link canonicalization

Specified in the schema. UUID’s are converted to resource paths.

{
 "award": "/awards/my-award/",
 "lab": "/labs/my-lab",
 "source": "/sources/some-source/",
 "organism": "/organisms/human/",
 "submitted_by": "/users/me/",
}

Calculated properties

These include the JSON-LD boilerplate along with other dynamically calculated properties such as a consistently formatted title and reverse links pulled from the links table.

{
 "@id": "/biosamples/ENCBS000TST/",
 "@type": ["biosample", "item"],
 "uuid": "7c245cea-7d59-45fb-9ebe-f0454c5fe950"
 "name": "ENCBS000TST",
 "title": "Biosample ENCBS000TST (human)",
 "characterizations": [],
}

JSON result

Combining gives us:

{
 "biosample_type": "DNA",
 "biosample_term_id": "UBERON:349829",
 "aliases": ["my-lab:sample1"],
 "accession": "ENCBS000TST",
 "date_created": "2014-01-20T10:30:00-0800",
 "status": "IN PROGRESS",

 "award": "/awards/my-award/",
 "lab": "/labs/my-lab",
 "source": "/sources/some-source/",
 "organism": "/organisms/human/",
 "submitted_by": "/users/me/",

 "@id": "/biosamples/ENCBS000TST/",
 "@type": ["biosample", "item"],
 "uuid": "7c245cea-7d59-45fb-9ebe-f0454c5fe950"
 "name": "ENCBS000TST",
 "title": "Biosample ENCBS000TST (human)",
 "characterizations": [],
}

This is the representation returned within the POST/PUT/PATCH result and when specifying frame=object within the query parameters.

Embedding

Each object type specifies its embedded properties, for biosample we have:

[
 "donor.organism",
 "submitted_by",
 "lab",
 "award",
 "source",
 "treatments.protocols.submitted_by",
 "treatments.protocols.lab",
 "treatments.protocols.award",
 "constructs.documents.submitted_by",
 "constructs.documents.award",
 "constructs.documents.lab",
 "constructs.target",
 "protocol_documents.lab",
 "protocol_documents.award",
 "protocol_documents.submitted_by",
 "derived_from",
 "part_of",
 "pooled_from",
 "characterizations.submitted_by",
 "characterizations.award",
 "characterizations.lab",
 "rnais.target.organism",
 "rnais.source",
 "rnais.documents.submitted_by",
 "rnais.documents.award",
 "rnais.documents.lab",
 "organism"
]

The specified links are then replaced with objects:

{
 "biosample_type": "DNA",
 "biosample_term_id": "UBERON:349829",
 "aliases": ["my-lab:sample1"],
 "accession": "ENCBS000TST",
 "date_created": "2014-01-20T10:30:00-0800",
 "status": "IN PROGRESS",

 "award": {
 "@id": "/awards/my-award/",
 "@type": ["award", "item"],
 "uuid": "fae1bd8b-0d90-4ada-b51f-0ecc413e904d",
 "name": "my-award"
 },

 "lab": {
 "@id": "/labs/my-lab",
 "@type": ["lab", "item"],
 "uuid": "b635b4ed-dba3-4672-ace9-11d76a8d03af",
 "name": "my-lab",
 "title": "My Lab"
 },

 "source": {
 "@id": "/sources/some-source/",
 "@type": ["source", "item"],
 "uuid": "1d5be796-8f80-4fd4-b6c7-6674318657eb",
 "name": "some-source",
 "title": "Some source"
 },

 "organism": {
 "@id": "/organisms/human/",
 "@type": ["organism", "item"],
 "uuid": "7745b647-ff15-4ff3-9ced-b897d4e2983c",
 "name": "human",
 "scientific_name": "Homo sapiens",
 "taxon_id": "9606",
 },

 "submitted_by": {
 "@id": "/users/me/",
 "@type": ["user", "item"],
 "uuid": "bb319896-3f78-4e24-b6e1-e4961822bc9b",
 "title": "My Name",
 "lab": "/labs/my-lab"
 },

 "@id": "/biosamples/ENCBS000TST/",
 "@type": ["biosample", "item"],
 "uuid": "7c245cea-7d59-45fb-9ebe-f0454c5fe950"
 "name": "ENCBS000TST",
 "title": "Biosample ENCBS000TST (human)",
 "characterizations": [],
}

This embedded object is indexed in elasticsearch to allow searching and faceting across the embedded values.
It is returned when when specifying frame=embedded within the query parameters.

Page expansion

The final step in the rendering pipeline is applied only to single items, not to search results.
It provides the opportunity to add properties that are restricted or tailored to certain users, such as the actions and audit results:

{
 "actions": [
 {
 "profile": "/profiles/biosample.json",
 "href": "/biosamples/ENCBS000TST/#!edit",
 "name": "edit",
 "title": "Edit"
 },
 {
 "profile": "/profiles/biosample.json",
 "href": "/biosamples/ENCBS000TST/#!edit-json",
 "name": "edit-json",
 "title": "Edit JSON"
 }
],
 "audit": {
 "ERROR": [
 {
 "category": "missing donor",
 "name": "audit_biosample_donor",
 "level": 60,
 "detail": "Biosample ENCBS000TST requires a donor",
 "path": "/biosamples/ENCBS000TST/",
 "level_name": "ERROR"
 }
]
 }
}

Overview of encoded Application

This document does not contain installation or operating instructures. See README.rst for that.

Encoded is a python/javascript application for storing, modifying, retrieving and displaying the metadata (as JSON objects) for the ENCODE [http://www.encodeproject.org/] project.
The application was designed specifically to store metadata for high-throughput genomics experiments, but the overall architecture is suitable for any set of highly linked objects.

The “deep” backend is a simple Postgres object database. The relational database does not store any specific information about the objects but simply tracks transactions and keys. CRUD (Create/Read/Update/Delete) in this database is governed by a python Pyramid [http://www.pylonsproject.org/] app. This python app can stand alone and provide JSON objects via GET directly from the database.

Elasticsearch [http://www.elasticsearch.org/] is used to deeply and robustly index the entire object store and provide extremely fast read access and powerful search capability.

The Browser accessible frontend is written in ReactJS [http://facebook.github.io/react/] and uses the same Pyramid [http://www.pylonsproject.org/] URL dispatch as the backend, but converts the GET request JSON into XHTML for viewing in a Web Browser.

SOURCE CODE ORGANIZATION

* WARNING THIS IS OUT OF DATE SINCE snovault SPLIT OFF – REWRITE WHEN IT’S TOTALLY DIVORCED *

	
	Root - the root directory contains configuration files and install scripts along with other accessory directories

	
	bin - command line excutables (see src/commmands) from buildout (see PyramidDocs [http://docs.pylonsproject.org/en/latest/])

	develop & develop-eggs - source and python eggs (created by buildout)

	docs - documentation (including this file)

	eggs - Python dependencies from PyPi (created by buildout)

	etc - apache config and other admin files

	node_modules - JS (Node) dependencies from npm (created by buildout)

	parts - wsgi interfaces and ruby dependencies (gems) (created by buildout)

	scripts - cron jobs

	
	src directory - contains all the python and javascript code for front and backends

	
	commands - the python source for command line scripts used for synching, indexing and other utilities independent of the main Pyramid application

	schemas - JSON schemas (JSONSchema [http://json-schema.org/], JSON-LD [http://json-ld.org/]) describing allowed types and values for all metadata objects

	static - Frontend JS (components), SCSS/CSS (HTML styling), images, fonts and frontend JS libraries

	tests - Unit and integration tests

	upgrade - python instructions for upgrading old objects stored to the latest schema

	views - business logic for dispatching URLs and producing the correct JSON

BACKEND

	Application (responds to web requests) - the main config files are *.ini in the root encoded directory.

Guts

views

The guts of the web application are in the views package. Views.views defines the Item and Collection classes that the web app will respond to via URLs like /{things}/ (returns a Collection of Things) and /{things}/{id} (retuns a Thing).

	Other modules in the views package correspond to non-core views that the app will respond to.

	user.py - special user objects are special
access_key.py - generation/modification of access keys for programatic access
search.py - constructs ES query and passes though to :9200

snovault.py

snovault.py defines the core Collection and Item classes which are the python representation of linked JSON objects and groups (collections) of linked JSON objects. It contains the business logic for updating JSON objects via PATCH and the recursive GETs necessary for embedded objects.

AuthZ

	authentication.py

	authorization.py

	persona.py

	
	JSON data schema

	
	definition

	Each object type has a .json schema file in /schemas. The objects are linked and embedded within each other by reference, forming a graph structure. “Mixins” are sub-schemas included in more than one object type definition. Each schema file is versioned and mapping an object from an older schema to a new one is called upgrading

	validation

	Objects are validated as they are POSTed or PATCHed to the application (via HTTP). Not sure when/how the validation is hooked in

	upgrading

	No idea

	linked and embedded objects

	Sorcery

	
	Postgres Storage

	
	Loading

	Elasticsearch & Indexing

FRONTEND

The pyramid app handles all URL dispatch and fetches JSON objects from Elasticsearch (or optionally, the database directly). These can be either individual objects or Collections (arrays) of objects. The objects can either be “flat” with no linked objects embedded, or with some or all linked objects embedded in the response.

	renderers.py - code that determines whether to return HTML or JSON based on request, as well as code for starting the node subprocess renderer.js which converts the ReactJS pages into XHTML.

Use of NodeJS

About ReactJS

Component Pages

HTML pages are written in Javascript using JSX [http://jsx.github.io] and ReactJS [http://facebook.github.io/react/]. These files are in src/static/components.
Each object type has a component which describes how both the individual item and the collection pages are rendered. Other pages include home and search. JSX [http://jsx.github.io] allows the JS file itself to serve like an HTML template, similar to other web frameworks.

Boilerplate and Parent Classes

	app.js

	globals.js

	mixins.js

	errors.js

	home.js

	item.js

	collection.js

	fetched.js

	edit.js

	testing.js

User Pages (Templates)

	index.js

	antibody.js

	biosample.js

	dataset.js

	experiment.js

	platform.js

	search.js

	target.js

Views and Sections (Templates)

	dbxref.js

	navbar.js

	footer.js

API

Parameters (to be supplied in POST object or via GET url parameters):

	datastore=(database|elasticsearch) default: elasticsearch

	format=json Return JSON objects instead of XHTML from browser.

	limit=((int)|all) return only some or all objects in a collection

	
	Searching

	
	

Search Documentation:

URIS

	
	http://{SERVER_NAME}/search/?searchTerm={term}

	Fetches all the documents which contain the text ‘term’.
The result set includes wild card searches and the ‘term’ should be atleast 3 characters long.

	SERVER_NAME: ENCODE server

	term: string that can be searched accross four item_types (i.e., experiment, biosample, antibody_approval, target)

	
	http://{SERVER_NAME}/search/?type={item_type}

	Fetches all the documents of that particular ‘item_type’

	SERVER_NAME: ENCODE server

	item_type: ENCODE item type (values can be: biosample, experiment, antibody_approval and target)

	
	http://{SERVER_NAME}/search/?type={item_type}&{field_name}={text}

	Fetches and then filters all the documents of a particular item_type on that field

	SERVER_NAME: ENCODE server

	item_type: ENCODE item type (values can be: biosample, experiment, antibody_approval and target)

	field_name: Any of the json property in the ENCODE ‘item_type’ schema

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/up-pressed.png

_static/up.png

_static/plus.png

